Skip to main content

Constitutive Relations from Particle Simulations

  • Conference paper
  • First Online:
Desiderata Geotechnica

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

  • 908 Accesses

Abstract

Particulate systems like powders, soil or granular matter are discrete, disordered systems displaying dynamic and static, fluid - and solid-like states. The transients between fluid - and solid-like behavior can be intermittent and sometimes both states coexist in steady-state. Bridging the gap between the particulate, microscopic picture (velocities, forces) on the particle scale and their continuum description (strain and stress) via a so-called micro-macro transition is the goal of this paper. The generalized local constitutive relation for the stress in critical state granular flows involves not only density and strain rate but also the jamming-density and the granular temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using either one of the correction terms alone, without the other, leads to slightly different coefficients in Eqs. (1) and (2), e.g., when the I-dependence is neglected for the case of very small gravity and thus very small confining stress, one observes a slightly different \( \mu_{0} = 0.17 \) due to the considerable inertial number at small p, see Eq. (14) and Fig. 5 in Ref. [5]. Thus, correction functions should always be applied together!

References

  1. Luding, S.: The effect of friction on wide shear bands. Part. Sci. Tech. 26, 33–42 (2008)

    Article  Google Scholar 

  2. Luding, S., Alonso-Marroquin, F.: The critical-state yield stress (termination locus) of adhesive powders from a single experiment. Granular Matter 13, 109–119 (2011)

    Article  Google Scholar 

  3. Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S.: Coarse-grained local and objective continuum description of 3D granular flows down an inclined surface. Phys. Fluids 25, 070605 (2013)

    Article  Google Scholar 

  4. Hartkamp, R., Todd, B., Luding, S.: A constitutive framework for the non-Newtonian pressure tensor of a simple fluid under planar flows. J. Chem. Phys. 138, 244508 (2013)

    Article  Google Scholar 

  5. Singh, A., Saitoh, K., Magnanimo, V., Luding, S.: Role of gravity or confining pressure and contact stiffness in granular rheology. New J. Phys. 17, 043028 (2015)

    Article  Google Scholar 

  6. Singh, A., Magnanimo, V., Saitoh, K., Luding, S.: Effect of cohesion on shear banding in quasi-static granular material. Phys. Rev. E 90(2), 022202 (2014)

    Article  Google Scholar 

  7. Vescovi, D., Luding, S.: Merging fluid & solid granular behavior. Soft Matter 12, 8616 (2016)

    Article  Google Scholar 

  8. Roy, S., Singh, A., Luding, S., Weinhart, T.: Micro-macro transition and simplified contact models for wet granular materials. Comp. Part. Mech. 3(4), 449–462 (2016)

    Article  Google Scholar 

  9. Roy, S., Luding, S., Weinhart, T.: A general(ized) local rheology for wet granular materials. New J. Phys. 19, 043014 (2017)

    Article  Google Scholar 

  10. Göncü, F., Luding, S.: Effect of particle friction and polydispersity on the macroscopic stress-strain relations of granular materials. Acta Geotech. 8, 629–643 (2013)

    Article  Google Scholar 

  11. Kumar, N., Luding, S., Magnanimo, V.: Macroscopic model with anisotropy based on micro-macro informations. Acta Mech. 225(8), 2319–2343 (2014)

    Article  MathSciNet  Google Scholar 

  12. Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granular Matter 12, 239–252 (2010)

    Article  Google Scholar 

  13. Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granular Matter 14, 289–294 (2012)

    Article  Google Scholar 

  14. Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 367–371 (2004)

    Article  Google Scholar 

  15. Ries, A., Wolf, D.E., Unger, T.: Shear zones in granular media: three-dimensional contact dynamics simulations. Phys. Rev. E 76, 051301 (2007)

    Article  Google Scholar 

  16. Nguyen, V.B., Darnige, T., Bruand, A., Clément, E.: Creep and fluidity of a real granular packing near jamming. Phys. Rev. Lett. 107, 138303 (2011)

    Article  Google Scholar 

  17. Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012)

    Article  Google Scholar 

  18. Hennan, D.L., Kamrin, K.: A predictive, size-dependent continuum model for dense granular flows. Proc. Natl. Acad. Sci. USA 110, 6730–6735 (2013)

    Article  MathSciNet  Google Scholar 

  19. Shi, H., Luding, S., Magnanimo, V.: Limestone powders yielding and steady state resistance under shearing with different testers. In: Mallick, S.S. (ed.) Proceedings of PGBSIA 2016, 1–3 December 2016

    Google Scholar 

  20. Shi, H., et al.: Effect of particle size and cohesion on powder yielding and flow. KONA 2018014 (2017)

    Google Scholar 

  21. Göncü, F., Duran, O., Luding, S.: Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres. C. R. Mecanique 338(10–11), 570–586 (2010)

    Article  Google Scholar 

  22. Luding, S.: Granular matter: so much for the jamming point. Nat. Phys. 12, 531 (2016)

    Article  Google Scholar 

  23. Kumar, N., Luding, S.: Memory of jamming – multiscale models for soft and granular matter. Granular Matter 18, 58 (2016)

    Article  Google Scholar 

  24. Pons, A., Darnige, T., Crassous, J., Clement, E., Amon, A.: Spatial repartition of local plastic processes in different creep regimes in a granular material. EPL 113(2), 28001 (2016)

    Article  Google Scholar 

  25. Koval, G., Roux, J.N., Corfdir, A., Chevoir, F.: Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79, 021306 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Luding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luding, S. (2019). Constitutive Relations from Particle Simulations. In: Wu, W. (eds) Desiderata Geotechnica. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-14987-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14987-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14986-4

  • Online ISBN: 978-3-030-14987-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics