Skip to main content

Incremental Learning of Traversability Cost for Aerial Reconnaissance Support to Ground Units

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2018)

Abstract

In this paper, we address traversability cost estimation using exteroceptive and proprioceptive data collected by a team of aerial and ground vehicles. The main idea of the proposed approach is to estimate the terrain traversability cost based on the real experience of the multi-legged walking robot with traversing different terrain types. We propose to combine visual features with the real measured traversability cost based on proprioceptive signals of the utilized hexapod walking robot as a ground unit. The estimated traversability cost is augmented by extracted visual features from the onboard robot camera, and the features are utilized to extrapolate the learned traversability model for an aerial scan of new environments to assess their traversability cost. The extrapolated traversability cost can be utilized in the high-level mission planning to avoid areas that are difficult to traverse but not visited by the ground units. The proposed approach has been experimentally verified with a real hexapod walking robot in indoor and outdoor scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartoszyk, S., Kasprzak, P., Belter, D.: Terrain-aware motion planning for a walking robot. In: RoMoCo, pp. 29–34 (2017). https://doi.org/10.1109/RoMoCo.2017.8003889

  2. Belter, D., Wietrzykowski, J., Skrzypczynski, P.: Employing natural terrain semantics in motion planning for a multi-legged robot. J. Intell. Robot. Syst., 1–21 (2018). https://doi.org/10.1007/s10846-018-0865-x

  3. Bradley, D.M., Chang, J.K., Silver, D., Powers, M., Herman, H., Rander, P., Stentz, A.: Scene understanding for a high-mobility walking robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1144–1151 (2015). https://doi.org/10.1109/IROS.2015.7353514

  4. Brown, D., Webster, G.: Now a stationary research platform, NASA’s mars rover spirit starts a new chapter in red planet scientific studies. NASA Press Release (2010)

    Google Scholar 

  5. Falconer, J.: Toshiba unveils four-legged nuclear plant inspection robot. Innovation Toronto (2012). http://www.innovationtoronto.com/2012/11/toshiba-unveils-four-legged-nuclear-plant-inspection-robot/. Accessed 10 April 2018

  6. Fankhauser, P., et al.: Collaborative navigation for flying and walking robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2859–2866 (2016). https://doi.org/10.1109/IROS.2016.7759443

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  8. Homberger, T., Bjelonic, M., Kottege, N., Borges, P.V.K.: Terrain-dependant control of hexapod robots using vision. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds.) ISER 2016. SPAR, vol. 1, pp. 92–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50115-4_9

    Chapter  Google Scholar 

  9. Jun, B.H., Shim, H., Kim, B., Park, J.Y., Baek, H., Yoo, S., Lee, P.M.: Development of seabed walking robot CR200. In: OCEANS MTS/IEEE Bergen, pp. 1–5 (2013). https://doi.org/10.1109/OCEANS-Bergen.2013.6608164

  10. Kottege, N., Parkinson, C., Moghadam, P., Elfes, A., Singh, S.P.N.: Energetics-informed hexapod gait transitions across terrains. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5140–5147 (2015). https://doi.org/10.1109/ICRA.2015.7139915

  11. Kragh, M., Jørgensen, R.N., Pedersen, H.: Object detection and terrain classification in agricultural fields using 3D lidar data. In: Nalpantidis, L., Krüger, V., Eklundh, J.-O., Gasteratos, A. (eds.) ICVS 2015. LNCS, vol. 9163, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20904-3_18

    Chapter  Google Scholar 

  12. Mrva, J., Faigl, J.: Tactile sensing with servo drives feedback only for blind hexapod walking robot. In: RoMoCo, pp. 240–245 (2015). https://doi.org/10.1109/RoMoCo.2015.7219742

  13. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017). https://doi.org/10.1109/TRO.2017.2705103

    Article  Google Scholar 

  14. Otsu, K., Ono, M., Fuchs, T.J., Baldwin, I., Kubota, T.: Autonomous terrain classification with co- and self-training approach. Robot. Autom. Lett. 1(2), 814–819 (2016). https://doi.org/10.1109/LRA.2016.2525040

    Article  Google Scholar 

  15. Pinto, R.C., Engel, P.M.: A fast incremental gaussian mixture model. PLoS One 10(10), e0139931 (2015). https://doi.org/10.1371/journal.pone.0139931

    Article  Google Scholar 

  16. Prágr, M., Čížek, P., Faigl, J.: Cost of transport estimation for legged robot based on terrain features inference from aerial scan. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1745–1750 (2018). https://doi.org/10.1109/IROS.2018.8593374

  17. Roennau, A., Heppner, G., Nowicki, M., Dillmann, R.: LAURON V: a versatile six-legged walking robot with advanced maneuverability. In: AIM, pp. 82–87 (2014). https://doi.org/10.1109/AIM.2014.6878051

  18. Sofman, B., Lin, E., Bagnell, J.A., Cole, J., Vandapel, N., Stentz, A.: Improving robot navigation through self-supervised online learning. J. Field Robot. 23(11–12), 1059–1075 (2006). https://doi.org/10.1002/rob.20169

  19. Stelzer, A., Hirschmüller, H., Görner, M.: Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int. J. Robot. Res. 31(4), 381–402 (2012). https://doi.org/10.1177/0278364911435161

    Article  Google Scholar 

  20. Tucker, V.A.: The energetic cost of moving about: walking and running are extremely inefficient forms of locomotion. Much greater efficiency is achieved by birds, fish—and bicyclists. Am. Sci. 63(4), 413–419 (1975)

    Google Scholar 

  21. Ünsalan, C., Boyer, K.L.: Linearized vegetation indices based on a formal statistical framework. IEEE Trans. Geosci. Remote Sens. 42(7), 1575–1585 (2004). https://doi.org/10.1109/TGRS.2004.826787

    Article  Google Scholar 

  22. Wellington, C., Stentz, A.: Online adaptive rough-terrain navigation in vegetation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 96–101 (2004). https://doi.org/10.1109/ROBOT.2004.1307135

Download references

Acknowledgements

This work has been supported by the Czech Science Foundation (GAČR) under research Project No. 18-18858S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Prágr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prágr, M., Čížek, P., Faigl, J. (2019). Incremental Learning of Traversability Cost for Aerial Reconnaissance Support to Ground Units. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics