Skip to main content

Trajectory Planning for Aerial Vehicles in the Area Coverage Problem with Nearby Obstacles

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2018)

Abstract

In this paper, we address the coverage path planning with curvature-constrained paths for a fixed-wing aerial vehicle. The studied problem is to provide a cost-efficient solution to cover a given area by the vehicle sensor from the specified altitude to provide a sufficient level of details in the captured snapshots of the area. In particular, we focus on scenarios where the area to be covered is surrounded by nearby obstacles such as trees or buildings, and the vehicle has to avoid collisions with the obstacles but maximizes the area coverage. We propose an extension of the existing coverage planning algorithm to determine a shortest collision-free path that is accompanied by Dubins Airplane model to satisfy the motion constraints of the vehicle. The reported results support the feasibility of the proposed approach to avoid nearby obstacles by optimal adjustments of the vehicle altitude while the requested complete coverage is satisfied. If such a solution is not found because of too close obstacles, a feasible solution maximizing the coverage is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E.U., Choset, H., Rizzi, A.A., Atkar, P.N., Hull, D.: Morse decompositions for coverage tasks. Int. J. Robot. Res. 21(4), 331–344 (2002). https://doi.org/10.1177/027836402320556359

    Article  Google Scholar 

  2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  3. Atkar, P.N., Conner, D.C., Greenfield, A., Choset, H., Rizzi, A.A.: Hierarchical segmentation of piecewise pseudoextruded surfaces for uniform coverage. IEEE Trans. Autom. Sci. Eng. 6(1), 107–120 (2009). https://doi.org/10.1109/TASE.2008.916768

    Article  Google Scholar 

  4. Cao, Z.L., Huang, Y., Hall, E.L.: Region filling operations with random obstacle avoidance for mobile robots. J. Field Robot. 5(2), 87–102 (1988). https://doi.org/10.1002/rob.4620050202

    Article  Google Scholar 

  5. Choset, H.: Coverage of known spaces: the boustrophedon cellular decomposition. Auton. Robots 9(3), 247–253 (2000). https://doi.org/10.1023/A:1008958800904

    Article  Google Scholar 

  6. Choset, H.: Coverage for robotics-a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001). https://doi.org/10.1023/A:1016639210559

    Article  MATH  Google Scholar 

  7. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957). https://doi.org/10.2307/2372560

    Article  MathSciNet  MATH  Google Scholar 

  8. Gage, D.W.: Randomized search strategies with imperfect sensors. In: Mobile Robots VIII, vol. 2058, pp. 270–280. International Society for Optics and Photonics (1994). https://doi.org/10.1117/12.167503

  9. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013). https://doi.org/10.1016/j.robot.2013.09.004

    Article  Google Scholar 

  10. Helsgaun, K.: LKH solver 2.0.9. http://www.akira.ruc.dk/~keld/research/LKH/. Accessed 1 Aug 2018

  11. Hert, S., Lumelsky, V.: Polygon area decomposition for multiple-robot workspace division. Int. J. Comput. Geom. Appl. 8(04), 437–466 (1998). https://doi.org/10.1142/S0218195998000230

    Article  MathSciNet  MATH  Google Scholar 

  12. Latombe, J.C.: Robot Motion Planning, vol. 124. Springer, Boston (2012). https://doi.org/10.1007/978-1-4615-4022-9

    Book  Google Scholar 

  13. Luo, C., Yang, S.X.: A real-time cooperative sweeping strategy for multiple cleaning robots. In: International Symposium on Intelligent Control, pp. 660–665. IEEE (2002). https://doi.org/10.1109/ISIC.2002.1157841

  14. Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Alami, R., Chatila, R., Asama, H. (eds.) Distributed Autonomous Robotic Systems 6, pp. 221–230. Springer, Tokyo (2007). https://doi.org/10.1007/978-4-431-35873-2_22

    Chapter  Google Scholar 

  15. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 116–121. IEEE (1985). https://doi.org/10.1109/ROBOT.1985.1087316

  16. Noon, C.E., Bean, J.C.: A lagrangian based approach for the asymmetric generalized traveling salesman problem. Oper. Res. 39(4), 623–632 (1991). https://doi.org/10.1287/opre.39.4.623

    Article  MathSciNet  MATH  Google Scholar 

  17. Oh, J.S., Choi, Y.H., Park, J.B., Zheng, Y.F.: Complete coverage navigation of cleaning robots using triangular-cell-based map. IEEE Trans. Ind. Electron. 51(3), 718–726 (2004). https://doi.org/10.1109/TIE.2004.825197

    Article  Google Scholar 

  18. Owen, M., Beard, R.W., McLain, T.W.: Implementing dubins airplane paths on fixed-wing UAVs*. In: Valavanis, K.P., Vachtsevanos, G.J. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 1677–1701. Springer, Dordrecht (2015). https://doi.org/10.1007/978-90-481-9707-1_120

    Chapter  Google Scholar 

  19. Perez-Imaz, H.I., Rezeck, P.A., Macharet, D.G., Campos, M.F.: Multi-robot 3D coverage path planning for first responders teams. In: IEEE International Conference on Automation Science and Engineering (CASE), pp. 1374–1379 (2016). https://doi.org/10.1109/COASE.2016.7743569

  20. Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014). https://doi.org/10.1016/j.autcon.2014.01.004

    Article  Google Scholar 

  21. Wong, S.C., MacDonald, B.A.: A topological coverage algorithm for mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 1685–1690. IEEE (2003). https://doi.org/10.1109/IROS.2003.1248886

  22. Xu, A., Viriyasuthee, C., Rekleitis, I.: Efficient complete coverage of a known arbitrary environment with applications to aerial operations. Auton. Robots 36(4), 365–381 (2014). https://doi.org/10.1007/s10514-013-9364-x

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Czech Science Foundation (GAČR) under research Project No. 16-24206S and Project No. 19-20238S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Váňa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marek, J., Váňa, P., Faigl, J. (2019). Trajectory Planning for Aerial Vehicles in the Area Coverage Problem with Nearby Obstacles. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics