Skip to main content

Modeling Proprioceptive Sensing for Locomotion Control of Hexapod Walking Robot in Robotic Simulator

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2018)

Abstract

Proprioceptive sensing encompasses the state of the robot given by its overall posture, forces, and torques acting on its body. It is an important source of information, especially for multi-legged walking robots because it enables efficient locomotion control that adapts to morphological and environmental changes. In this work, we focus on enhancing a simplified model of the multi-legged robot employed in a realistic robotic simulator to provide high-fidelity proprioceptive sensor signals. The proposed model enhancements are based on parameter identification and static and dynamic modeling of the robot. The enhanced model enables the V-REP robotic simulator to be used in real-world deployments of multi-legged robots. The performance of the developed simulation has been verified in the parameter search of dynamic locomotion gait to optimize the locomotion speed according to the limited maximal torques and self-collision free execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belter, D., Labecki, P., Skrzypczynski, P.: Adaptive motion planning for autonomous rough terrain traversal with a walking robot. J. Field Robot. 33(3), 337–370 (2016). https://doi.org/10.1002/rob.21610

    Article  Google Scholar 

  2. Čížek, P., Masri, D., Faigl, J.: Foothold placement planning with a hexapod crawling robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4096–4101 (2017). https://doi.org/10.1109/IROS.2017.8206267

  3. Collective of authors: Vortex Simulation Software. https://www.cm-labs.com/. Accessed 30 July 2018

  4. Erez, T., Tassa, Y., Todorov, E.: Simulation tools for model-based robotics: comparison of bullet, havok, mujoco, ode and physx. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4397–4404 (2015). https://doi.org/10.1109/ICRA.2015.7139807

  5. Coumans, E., et al.: Bullet Physics Library. http://bulletphysics.org/wordpress/. Accessed 30 July 2018

  6. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation platform V-REP: a versatile 3D robot simulator. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS (LNAI), vol. 6472, pp. 51–62. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17319-6_8

    Chapter  Google Scholar 

  7. Gao, H., et al.: A real-time, high fidelity dynamic simulation platform for hexapod robots on soft terrain. Simul. Model. Pract. Theor. 68, 125–145 (2016). https://doi.org/10.1016/j.simpat.2016.08.004

    Article  Google Scholar 

  8. Jerez, J., Suero, A., et al.: Newton Dynamics. http://newtondynamics.com/forum/newton.php. Accessed 30 July 2018

  9. Rohmer, E., Singh, S.P., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326 (2013). https://doi.org/10.1109/IROS.2013.6696520

  10. Roy, S.S., Pratihar, D.K.: Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot. Robot. Comput. Integr. Manuf. 29(2), 400–416 (2013). https://doi.org/10.1016/j.rcim.2012.09.010

    Article  Google Scholar 

  11. Smith, L.R., et al.: Open Dynamics Engine. http://www.ode.org/. Accessed 30 July 2018

  12. Soyguder, S., Alli, H.: Kinematic and dynamic analysis of a hexapod walking running-bounding-gaits robot and control actions. Comput. Electr. Eng. 38(2), 444–458 (2012). https://doi.org/10.1016/j.compeleceng.2011.10.008

    Article  Google Scholar 

  13. Spis, M., Matecki, A., Maik, P., Kurzawa, A., Kopicki, M., Belter, D.: Optimized and reconfigurable environment for simulation of legged robots. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) ICA 2017. AISC, vol. 550, pp. 290–299. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54042-9_26

    Chapter  Google Scholar 

  14. Szadkowski, R.J., Čížek, P., Faigl, J.: Learning central pattern generator network with back-propagation algorithm. In: Proceedings Information Technologies - Applications and Theory ITAT 2018, pp. 116–123 (2018)

    Google Scholar 

  15. Wensing, P.M., Wang, A., Seok, S., Otten, D., Lang, J., Kim, S.: Proprioceptive actuator design in the MIT cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Trans. Robot. 33(3), 509–522 (2017). https://doi.org/10.1109/TRO.2016.2640183

    Article  Google Scholar 

  16. Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D simulator of multiple legged robots based on USARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74024-7_2

    Chapter  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Czech Science Foundation (GAČR) under research Project No. 18-18858S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Čížek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyenová, M.T., Čížek, P., Faigl, J. (2019). Modeling Proprioceptive Sensing for Locomotion Control of Hexapod Walking Robot in Robotic Simulator. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics