Skip to main content

Classical Wave Equations

  • Chapter
  • First Online:
Waves with Power-Law Attenuation

Abstract

The aim of this chapter is to describe the conventional acoustic models in the framework of linear elasticity. The two main attenuation mechanisms are the viscous and the relaxation ones. It is shown that the viscous model derives from the Kelvin–Voigt spring–damper system, and that the relaxation model is based on the standard linear solid or Zener model. The multiple-relaxation model for seawater and air are also shown to be based on the Maxwell–Wiechert model, which is a generalization of the Zener model. This establishes the foundation for later generalization to fractional versions of the linear viscoelastic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The opposite naming convention, with \(\tau _\varepsilon \) and \(\tau _\sigma \) exchanged, is also used. Examples are Zener (1948), Mainardi (1994), Holm and Sinkus (2010), Holm and Näsholm (2014), but here the definitions follow that of Mainardi (2010) as then the step response in \(\sigma \) will be described by \(\tau _\sigma \) and the same for \(\varepsilon \) and \(\tau _\varepsilon \), see (3.45) and (3.47).

References

  • S. Abdalla, Low frequency dielectric properties of human blood. IEEE Trans. Nanobiosci. 10(2), 113–120 (2011)

    Article  Google Scholar 

  • M. Ainslie, J.G. McColm, A simplified formula for viscous and chemical absorption in sea water. J. Acoust. Soc. Am. 103(3), 1671–1672 (1998)

    Article  ADS  Google Scholar 

  • F. Álvarez, R. Kuc, Dispersion relation for air via Kramers–Kronig analysis. J. Acoust. Soc. Am. 124, EL57–EL61 (2008)

    Google Scholar 

  • J.C. Bamber, Attenuation and absorption, in Physical Principles of Medical Ultrasonics, 2nd edn., ed. by C.R. Hill, J.C. Bamber, G.R. ter Haar (Wiley, UK, 2004), pp. 93–166. Chap. 4

    Google Scholar 

  • H.E. Bass, L.C. Sutherland, A.J. Zuckerwar, D.T. Blackstock, D.M. Hester, Atmospheric absorption of sound: Further developments. J. Acoust. Soc. Am. 97, 680–683 (1995)

    Article  ADS  Google Scholar 

  • H .E. Bass, L .C. Sutherland, A .J. Zuckerwar, D .T. Blackstock, D .M. Hester, Erratum: Atmospheric absorption of sound: Further developments [J. Acoust. Soc. Am. 97, 680–683 (1995)]. J. Acoust. Soc. Am. 99, 1259 (1996)

    Google Scholar 

  • A.B. Bhatia, Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids (Courier Dover Publications, 1967)

    Google Scholar 

  • D.T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)

    Google Scholar 

  • D.T. Blackstock, Transient solution for sound radiated into a viscous fluid. J. Acoust. Soc. Am. 41(5), 1312–1319 (1967)

    Article  ADS  MATH  Google Scholar 

  • D. Browning, R. Mellen, Attenuation of low-frequency sound in the sea: Recent results, in Progress in Underwater Acoustics (Springer, Berlin, 1987), pp. 403–410

    Google Scholar 

  • K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)

    Article  ADS  Google Scholar 

  • F.E. Davis, Effects of cable, loudspeaker, and amplifier interactions. J. Audio Eng. Soc. 39(6), 461–468 (1991)

    Google Scholar 

  • L.B. Evans, H.E. Bass, L.C. Sutherland, Atmospheric absorption of sound: theoretical predictions. J. Acoust. Soc. Am. 51(5B), 1565–1575 (1972)

    Article  ADS  Google Scholar 

  • S. Gabriel, R. Lau, C. Gabriel, The dielectric properties of biological tissues: Iii. parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271 (1996)

    Article  Google Scholar 

  • E.L. Hamilton, Attenuation of shear waves in marine sediments. J. Acoust. Soc. Am. 60(2), 334–338 (1976)

    Article  ADS  Google Scholar 

  • M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Acoustical Society of America Press, New York, 2008)

    Google Scholar 

  • E.L. Hamilton, H.P. Bucker, D.L. Keir, J.A. Whitney, Velocities of compressional and shear waves in marine sediments determined in situ from a research submersible. J. Geophys. Res. 75(20), 4039–4049 (1970)

    Article  ADS  Google Scholar 

  • S. Holm, O .B. Hovind, S. Rostad, R. Holm, Indoors data communications using airborne ultrasound, in IEEE International Conference on Acoustics, Speech, and Signal Processing (2005), pp. 957–960

    Google Scholar 

  • S. Holm, Ultrasound positioning based on time-of-flight and signal strength, in International Conference on Indoor Positioning and Indoor Navigation (IPIN) (IEEE, 2012), pp. 1–6

    Google Scholar 

  • S. Holm, S.P. Näsholm, A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130(4), 2195–2202 (2011)

    Article  ADS  Google Scholar 

  • S. Holm, S.P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography. Ultrasound. Med. Biol. 40(4), 695–703 (2014)

    Article  Google Scholar 

  • S. Holm, R. Sinkus, A unifying fractional wave equation for compressional and shear waves. J. Acoust. Soc. Am. 127, 542–548 (2010)

    Article  ADS  Google Scholar 

  • G.P. Howell, C.L. Morfey, Frequency dependence of the speed of sound in air. J. Acoust. Soc. Am. 82, 375–376 (1987)

    Article  ADS  Google Scholar 

  • L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn. (Wiley-VCH, New York, 1999)

    Google Scholar 

  • D. Klatt, U. Hamhaber, P. Asbach, J. Braun, I. Sack, Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52(24), 7281–7294 (2007a)

    Google Scholar 

  • L. Knopoff, Q. Rev. Geophys. 2(4), 625–660 (1964)

    Google Scholar 

  • F. Mainardi, Fractional Calculus and Waves in Linear Viscoelesticity: An Introduction to Mathematical Models (Imperial College Press, UK, 2010)

    Google Scholar 

  • F. Mainardi, Fractional relaxation in anelastic solids. J. Alloys Comput. 211, 534–538 (1994)

    Article  Google Scholar 

  • J.J. Markham, R.T. Beyer, R.B. Lindsay, Absorption of sound in fluids. Rev. Mod. Phys. 23(4), 353–411 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.C. Maxwell, IV. On the dynamical theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1867)

    Article  ADS  Google Scholar 

  • F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, The composition of standard seawater and the definition of the reference-composition salinity scale. Deep. Sea Res. Part I: Ocean. Res. Pap. 55(1), 50–72 (2008)

    Article  ADS  Google Scholar 

  • C.L. Morfey, G.P. Howell, Speed of sound in air as a function of frequency and humidity. J. Acoust. Soc. Am. 68, 1525–1527 (1980)

    Article  ADS  Google Scholar 

  • A.I. Nachman, J.F. Smith III, R.C. Waag, An equation for acoustic propagation in inhomogeneous media with relaxation losses. J. Acoust. Soc. Am. 88, 1584–1595 (1990)

    Article  ADS  Google Scholar 

  • J. Peatross, M. Ware, Physics of Light and Optics (2015). https://optics.byu.edu/

  • A. Pippard, The Cavendish laboratory. Eur. J. Phys. 8(4), 231 (1987)

    Article  Google Scholar 

  • G.G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 8 (part III), 287–319 (1845)

    Google Scholar 

  • N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction (Springer, Berlin, 1989). Reprinted in 2012

    Book  MATH  Google Scholar 

  • H. Tzschätzsch, J. Guo, F. Dittmann, S. Hirsch, E. Barnhill, K. Jöhrens, J. Braun, I. Sack, Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves. Med. Image Anal. 30, 1–10 (2016)

    Article  Google Scholar 

  • J.R. Wait, Relaxation phenomena and induced polarization. Geoexploration 22(2), 107–127 (1984)

    Article  Google Scholar 

  • C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sverre Holm .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holm, S. (2019). Classical Wave Equations. In: Waves with Power-Law Attenuation. Springer, Cham. https://doi.org/10.1007/978-3-030-14927-7_2

Download citation

Publish with us

Policies and ethics