Fuzzy Model Predictive Control for Discrete-Time System with Input Delays

  • Sofiane BououdenEmail author
  • Ilyes Boulkaibet
  • Mohammed Chadli
  • Ivan Zelinka
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)


In this paper, we present a robust fuzzy model predictive control (RFMPC) for a class of discrete-time system with input delays. The system is represented into a Takagi-Sugeno (T-S) discrete fuzzy model. Based on the Lyapunov functions theory, some required sufficient conditions are established in terms of linear-matrix inequalities (LMIs). The provided conditions are obtained through a fuzzy Lyapunov function candidate and a non-PDC control law, which can guarantee that the resulting closed-loop fuzzy system is asymptotically stable. A numerical example is provided to illustrate the effectiveness of the control algorithm.


Takagi–Sugeno (T–S) fuzzy system Time-delays Model predictive control Linear-matrix inequalities (LMIs) 


  1. 1.
    Liu, L., Yin, S., Zhang, L., Yin, X., Yan, H.: Improved results on asymptotic stabilization for stochastic nonlinear time-delay systems with application to a chemical reactor system. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 195–204 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, J., Chen, Z., Cai, D., Zhen, W., Huang, Q.: Delay-dependent stability control for power system with multiple time-delays. IEEE Trans. Power Syst. 31(3), 2316–2326 (2016)CrossRefGoogle Scholar
  3. 3.
    Qi, T., Zhu, J., Chen, J.: Fundamental limits on uncertain delays: when is a delay system stabilizable by LTI controllers. IEEE Trans. Autom. Control 62(3), 1314–1328 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Farza, M., M’Saad, M., Ménard, T., Fall, M.L., Gehan, O., Pigeon, E.: Simple cascade observer for a class of nonlinear systems with long output delays. IEEE Trans. Autom. Control 60(12), 3338–3343 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bin Zhou; Zhao-Yan Li: Truncated predictor feedback for periodic linear systems with input delays with applications to the elliptical spacecraft rendezvous. IEEE Trans. Control Syst. Technol. 23(6), 2238–2250 (2015)CrossRefGoogle Scholar
  6. 6.
    Yonggang Chen; Shumin Fei; Yongmin Li: Robust stabilization for uncertain saturated time-delay systems: a distributed-delay-dependent polytopic approach. IEEE Trans. Autom. Control 62(7), 3455–3460 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bououden, S., Chadli, M., Karimi, H.R.: A robust predictive control design for nonlinear active car suspension systems. Asian J. Control 8(1), 1–11 (2016)zbMATHGoogle Scholar
  8. 8.
    Boulkaibet, I., Belarbi, K., Bououden, S., Marwala, T., Chdali, M.: A new T-S fuzzy model predictive control for nonlinear processes. Expert Syst. Appl. 88, 132–151 (2017)CrossRefGoogle Scholar
  9. 9.
    Bououden, S., Chadli, M., Zhang, L., Yang, T.: Constrained model predictive control for time-varying delays systems: application to an active car suspension. Int. J. Control Autom. Syst. 14(1), 51–58 (2016)CrossRefGoogle Scholar
  10. 10.
    Killian, M., Mayer, B., Schirrer, A., Kozek, M.: Cooperative fuzzy model-predictive control. IEEE Trans. Fuzzy Syst. 24(2), 471–482 (2016)CrossRefGoogle Scholar
  11. 11.
    Khooban, M.H., Vafamand, N., Niknam, T.: T-S fuzzy model predictive speed control of electrical vehicles. ISA Trans. 64, 231–240 (2016)CrossRefGoogle Scholar
  12. 12.
    Lu, Q., Shi, P., Lam, H.K., Zhao, Y.: Interval type-2 fuzzy model predictive control of nonlinear networked control, systems. IEEE Trans. Fuzzy Syst. 23(6), 2317–2328 (2015)CrossRefGoogle Scholar
  13. 13.
    Martins, M.A.F., Yamashita, A.S., Santoro, B.F., Odloak, D.: Robust model predictive control of integrating time delay processes. J. Process Control 23(7), 917–932 (2013)CrossRefGoogle Scholar
  14. 14.
    Bobal, V., Kubalcik, M., Dostal, P., Matejicek, J.: Adaptive predictive control of time-delay systems. Comput. Math. Appl. 66, 165–176 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tanaka, K., Wang, H.O.: Fuzzy control systems design and analysis. A Linear Matrix Inequality Approach. Wiley, New York (2001)Google Scholar
  16. 16.
    Ohtake, H., Tanaka, K.: Switching model construction and stability analysis for nonlinear systems. J. Adv. Comput. Intell. Intell. Inform. 10(1), 3–10 (2006)CrossRefGoogle Scholar
  17. 17.
    Ohtake, H., Tanaka, K., Wang, H.O.: Fuzzy modeling via sector nonlinearity concept. Integr. Comput.-Aided Eng. 10(4), 333–341 (2003)CrossRefGoogle Scholar
  18. 18.
    Bououden, S., Chadli, M., Allouani, F., Filali, S.: A new approach for fuzzy predictive adaptive controller design using particle swarm optimization algorithm. Int. J. Innovative Comput. Inf. Control 9(9), 3741–3758 (2013)Google Scholar
  19. 19.
    Chadli, M., Karimi, H.R.: Robust observer design for unknown inputs Takagi-Sugeno models. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)CrossRefGoogle Scholar
  20. 20.
    Lu, J., Li, D., Xi, Y.: Probability-based constrained MPC for structured uncertain systems with state and random input delays. International Journal of Systems Science 44(7), 1354–1365 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sofiane Bououden
    • 1
    Email author
  • Ilyes Boulkaibet
    • 2
  • Mohammed Chadli
    • 3
  • Ivan Zelinka
    • 4
  1. 1.Department of Industrial EngineeringUniversity Abbes LaghrourKhenchelaAlgeria
  2. 2.University of JohannesburgJohannesburgSouth Africa
  3. 3.University of Picardie Jules Verne-MISAmiensFrance
  4. 4.Faculty of Electrical Engineering and Computer ScienceVŠB-TUOOstravaCzech Republic

Personalised recommendations