IoT Approach to Street Lighting Control Using MQTT Protocol

  • Radim KuncickyEmail author
  • Jakub Kolarik
  • Lukas Soustek
  • Lumir Kuncicky
  • Radek Martinek
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)


This article shows modern approach to street light control based on Ethernet network with Message Queuing Telemetry Transport (MQTT) protocol with ideas of Internet of Things (IoT). The real implementation of such a luminaire is shown, with following testing on BroadbandLIGHT polygon. We demonstrates advantages of our solution, which meet requirements of future cities, today many times called as a smart city. It obvious that this approach to connection and controlling of public light system allows fast expansion of Smart technologies and related services. In experimental part we primary discus requirements and influence of technology to network bandwidth. The original benefit of the study is to verify the functionality of IoT approach to street lighting control using real-time MQTT protocol. The realized experiments clearly confirmed the usability of the real-world public lighting infrastructure to cover the intravilan city with SMART technologies.


sMQTT protocol IoT Street lighting control DALI 



This article was supported by the Ministry of Education of the Czech Republic (Project No. SP2018/170). This work was supported by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019/0000867 within the Operational Programme Research, Development and Education and by Grant of SGS No. 2018/177, VSB-Technical University of Ostrava and under the support of NAVY and MERLIN research lab.


  1. 1.
    Wojnicki, I., Kotulski, L.: Empirical study of how traffic intensity detector parameters influence dynamic street lighting energy consumption: a case study in Krakow, Poland. Sustainability 10(4), 1221 (2018). ISSN 2071-1050. Accessed 25 July 2018CrossRefGoogle Scholar
  2. 2.
    Wojnicki, I., Ernst, S., Kotulski, L.: Economic impact of intelligent dynamic control in urban outdoor lighting. Energies 9(5), 314 (2016). ISSN 1996-1073. Accessed 25 July 2018CrossRefGoogle Scholar
  3. 3.
    Muhendra, R., Arzi, Y.H.: Development of street lights controller using wifi mesh network. In: Proceeding of 2017 International Conference on Smart Cities, Automation and Intelligent Computing System. IEEE (2017). ISBN 978-1-5090-6280-5Google Scholar
  4. 4.
    Bellido-Outeiriño, F., Quiles-Latorre, F., Moreno-Moreno, C., Flores-Arias, J., Moreno-García, I., Ortiz-López, M.: Streetlight control system based on wireless communication over DALI protocol. Sensors, 16(5), 597 (2016). ISSN 1424-8220. Accessed 30 July 2018
  5. 5.
    Artistic Licence. Accessed 22 Aug 2018
  6. 6.
    Tseng, K.H., Hsieh, CL.: A Solution for intelligent street lamp monitoring and energy management. In: Proceeding of 2016 IEEE 11th Conference on Industrial Electronics and Application. IEEE, Hefei, pp. 843–847 (2016)Google Scholar
  7. 7.
    Petra Energy Solution Brochure. Petra Systems. Accessed 22 Aug 2018
  8. 8.
  9. 9.
  10. 10.
    ACT No. 13/1997 Sb, Zákon o pozemních komunikacích (In Czech)Google Scholar
  11. 11.
    Tesar, J.: Veřejné osvětlení a jeho současný stav v České republice. (2008). (In Czech). Accessed 24 July 2018
  12. 12.
    Žádost o informaci podle zákona č. 106/1999 Sb. Chvaletice: Chvaletice (2015). (In Czech). Accessed 30 July 2018
  13. 13.
    Constrained Application protocol.
  14. 14.
    MQTT - Message Queuing Telemetry Transport.
  15. 15.
    Extensible Messaging and Presence Protocol.
  16. 16.
    Happ, D., Karowski, N., Menzel, T., Handziski, V., Wolisz, A.: Meeting IoT platform requirements with open pub/sub solutions. Ann. Telecommun. 72(1–2), 41–52 (2017). ISSN 0003-4347. Accessed 24 Aug 2018CrossRefGoogle Scholar
  17. 17.
    Năstase, L., Sandu, I.E., Popescu, N.: An experimental evaluation of application layer protocols for the internet of things. Stud. Inf. Control 26(4), 403–412 (2017). ISSN 12201766. Accessed 24 Aug 2018CrossRefGoogle Scholar
  18. 18.
    Crespi, N., Manzalini, A., Secci, S.: Proceedings of the 2017 20th International Conference on Innovations in Clouds, Internet and Networks (ICIN), 7–9 March 2017 in Paris, France. IEEE, Piscataway (2017)Google Scholar
  19. 19.
    Safaei, B., Monazzah, A.M.H., Bafroei, M.B., Ejlali, A.: 2017 2nd International Conference on System Reliability and Safety, ICSRS 2017, 20–22 December 2017, Milan, Italy. IEEE, Piscataway (2017)Google Scholar
  20. 20.
    Swamy, S.N., Jadhav, D., Kulkarni, N.: Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud (I-SMAC 2017), 10–11 February 2017. IEEE, Piscataway (2017)Google Scholar
  21. 21.
    Yokotani, T., SASAKI, Y.: Comparison with HTTP and MQTT on required network resources for IoT. In: 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), pp. 1–6. IEEE (2016). ISBN 978-1-5090-0744-8. Accessed 24 July 2018
  22. 22.
    ČSN EN 50160 ED. 3. Charakteristiky napětí elektrické energie dodávané z veřejných distribučních sítí. (2011). (In Czech)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Radim Kuncicky
    • 1
    Email author
  • Jakub Kolarik
    • 2
  • Lukas Soustek
    • 2
  • Lumir Kuncicky
    • 3
  • Radek Martinek
    • 2
  1. 1.Department of Computer Science, Faculty of Electrical Engineering and Computer ScienceVSB–Technical University of OstravaOstravaCzech Republic
  2. 2.Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer ScienceVSB–Technical University of OstravaOstravaCzech Republic
  3. 3.Department of Electrical Power Engineering, Faculty of Electrical Engineering and Computer ScienceVSB–Technical University of OstravaOstravaCzech Republic

Personalised recommendations