Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 554))

Abstract

In this paper, we propose a new method for pupil localization in images. The main contribution of the proposed method is twofold. Firstly, the method is based on the proposed eye model that takes into account physiological properties of eyes (i.e. reflects the properties of pupil, iris, and sclera). Secondly, the correct shape and the position of the model are determined using an evolutionary algorithm called Self-Organizing Migrating Algorithm (SOMA). Thanks to these ideas, the proposed method is faster than the state-of-the-art methods without reduction of accuracy. We evaluated the algorithms on two publicly available data sets in remote tracking scenarios (namely BioID [7] and GI4E [11]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davendra, D., Zelinka, I., et al.: Self-organizing migrating algorithm. New Optimization Techniques in Engineering (2016)

    Google Scholar 

  2. Fuhl, W., Geisler, D., Santini, T., Rosenstiel, W., Kasneci, E.: Evaluation of state-of-the-art pupil detection algorithms on remote eye images. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, UbiComp 2016, pp. 1716–1725. ACM, New York (2016). https://doi.org/10.1145/2968219.2968340

  3. Fuhl, W., Kübler, T., Sippel, K., Rosenstiel, W., Kasneci, E.: Excuse: Robust pupil detection in real-world scenarios. In: Azzopardi, G., Petkov, N. (eds.) Computer Analysis of Images and Patterns, pp. 39–51. Springer, Cham (2015)

    Google Scholar 

  4. Fuhl, W., Santini, T.C., Kübler, T.C., Kasneci, E.: Else: ellipse selection for robust pupil detection in real-world environments. CoRR abs/1511.06575 (2015). http://arxiv.org/abs/1511.06575

  5. George, A., Routray, A.: Fast and accurate algorithm for eye localization for gaze tracking in low resolution images. CoRR abs/1605.05272 (2016). http://arxiv.org/abs/1605.05272

  6. Javadi, A.H., Hakimi, Z., Barati, M., Walsh, V., Tcheang, L.: Set: a pupil detection method using sinusoidal approximation. Front. Neuroeng. 8, 4 (2015). https://www.frontiersin.org/article/10.3389/fneng.2015.00004

    Article  Google Scholar 

  7. Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) Audio-and Video-Based Biometric Person Authentication, pp. 90–95. Springer, Heidelberg (2001)

    Google Scholar 

  8. Kacete, A., Royan, J., Seguier, R., Collobert, M., Soladie, C.: Real-time eye pupil localization using Hough regression forest. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–8, March 2016

    Google Scholar 

  9. Li, D., Winfield, D., Parkhurst, D.J.: Starburst: a hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Workshops, p. 79, June 2005

    Google Scholar 

  10. Świrski, L., Bulling, A., Dodgson, N.: Robust real-time pupil tracking in highly off-axis images. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2012, pp. 173–176. ACM, New York (2012). https://doi.org/10.1145/2168556.2168585

  11. Villanueva, A., Ponz, V., Sesma-Sanchez, L., Ariz, M., Porta, S., Cabeza, R.: Hybrid method based on topography for robust detection of iris center and eye corners. ACM Trans. Multimedia Comput. Commun. Appl. 9(4), 25:1–25:20 (2013). http://doi.acm.org/10.1145/2501643.2501647

    Article  Google Scholar 

  12. Wagh, A.M., Todmal, S.R.: Article: eyelids, eyelashes detection algorithm and hough transform method for noise removal in iris recognition. Int. J. Comput. Appl. 112(3), 28–31 (2015)

    Google Scholar 

  13. Zelinka, I.: SOMA — Self-Organizing Migrating Algorithm. In: New Optimization Techniques in Engineering, pp. 167–217. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39930-8_7

Download references

Acknowledgments

This work was partially supported by Grant of SGS No. SP2018/42, VŠB - Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Fusek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fusek, R., Dobeš, P. (2020). Pupil Localization Using Self-organizing Migrating Algorithm. In: Zelinka, I., Brandstetter, P., Trong Dao, T., Hoang Duy, V., Kim, S. (eds) AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2018. Lecture Notes in Electrical Engineering, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-030-14907-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14907-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14906-2

  • Online ISBN: 978-3-030-14907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics