Wavelet Transform Decomposition for Fetal Phonocardiogram Extraction from Composite Abdominal Signal

  • Radana KahankovaEmail author
  • Radek Martinek
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 554)


This paper deals with the extraction of the fetal and maternal component from the composite abdominal phonocardiogram (PCG). The main method used for this task is the discrete wavelet transform. For the initial tests, we used synthetic PCG data incorporating the maternal heart sound interference. Based on the results, we suggested the suitable wavelet and the level of decomposition for fetal and maternal PCG extraction.


fECG Extraction DWT Wavelet decomposition Fetal monitoring 



This article was supported by the Ministry of Education of the Czech Republic (Project No. SP2018/170). This work was supported by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019/0000867 within the Operational Programme Research, Development and Education.


  1. 1.
    Bureev, A., Vaganova, E., Zhdanov, D., Zemlyakov, I., Dikman, E.: A mobile full-time daily system for fetal monitoring. In: MATEC Web of Conferences, vol. 79, p. 01026. EDP Sciences (2016)Google Scholar
  2. 2.
    Martinek, R., Nedoma, J., Fajkus, M., Kahankova, R., Konecny, J., Janku, P., Kepak, S., Bilik, P., Nazeran, H.: A phonocardiographic-based fiber-optic sensor and adaptive filtering system for noninvasive continuous fetal heart rate monitoring. Sensors 17(4), 890 (2017)CrossRefGoogle Scholar
  3. 3.
    Martinek, R., Kahankova, R., Nedoma, J., Fajkus, M., Nazeran, H., Nowakova, J.: Adaptive signal processing of fetal PCG recorded by interferometric sensor. In: The Euro-China Conference on Intelligent Data Analysis and Applications, pp. 235–243. Springer, Cham, October 2017Google Scholar
  4. 4.
    Samieinasab, M., Sameni, R.: Fetal phonocardiogram extraction using single channel blind source separation. In: 23rd Iranian Conference on Electrical Engineering (ICEE) 2015, pp. 78–83. IEEE, May 2015Google Scholar
  5. 5.
    Kahankova, R., Jaros, R., Martinek, R., Jezewski, J., He, W., Jezewski, M., Kawala-Janik, A.: Non-adaptive methods of fetal ECG signal processing. Adv. Electr. Electron. Eng. 15(3), 476 (2017)Google Scholar
  6. 6.
    Misal, A., Sinha, G.R.: Denoising of PCG signal by using wavelet transforms. Adv. Comput. Res. 4(1), 46–49 (2012)Google Scholar
  7. 7.
    Koutsiana, E., Hadjileontiadis, L.J., Chouvarda, I., Khandoker, A.H.: Fetal heart sounds detection using wavelet transform and fractal dimension. Front. Bioeng. Biotechnol. 5, 49 (2017)CrossRefGoogle Scholar
  8. 8.
    Chourasia, V.S., Mittra, A.K.: Wavelet-based denoising of fetal phonocardiographic signals. Int. J. Med. Eng. Inf. 2(2), 139–150 (2010)Google Scholar
  9. 9.
    Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theor. 36(5), 961–1005 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chourasia, V.S., Mittra, A.K.: Selection of mother wavelet and denoising algorithm for analysis of foetal phonocardiographic signals. J. Med. Eng. Technol. 33(6), 442–448 (2009)CrossRefGoogle Scholar
  11. 11.
    Varady, P.: Wavelet-based adaptive denoising of phonocardiographic records. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2001, vol. 2, pp. 1846–1849. IEEE (2001)Google Scholar
  12. 12.
    Jimenez, A., Ortiz, M.R., Pena, M.A., Charleston, S., Aljama, A.T., Gonzalez, R.: The use of wavelet packets to improve the detection of cardiac sounds from the fetal phonocardiogram. In: Computers in Cardiology 1999, pp. 463–466. IEEE (1999)Google Scholar
  13. 13.
    Vaisman, S., Salem, S.Y., Holcberg, G., Geva, A.B.: Passive fetal monitoring by adaptive wavelet denoising method. Comput. Biol. Med. 42(2), 171–179 (2012)CrossRefGoogle Scholar
  14. 14.
    Chourasia, V.S., Mittra, A.K.: Most suitable mother wavelet for fetal phono-cardiographic signal analysis. i-Manager’s J. Future Eng. Technol. 4(3), 23 (2009)Google Scholar
  15. 15.
    Cesarelli, M., Ruffo, M., Romano, M., Bifulco, P.: Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms. Comput. Methods Programs Biomed. 107(3), 513–523 (2012)CrossRefGoogle Scholar
  16. 16.
    Ruffo, M., Cesarelli, M., Romano, M., Bifulco, P., Fratini, A.: An algorithm for FHR estimation from foetal phonocardiographic signals. Biomed. Signal Process. Control 5, 131–141 (2010)CrossRefGoogle Scholar
  17. 17.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000).
  18. 18.
    Emereuwaonu, I.: Fetal heart rate misrepresented by maternal heart rate: a case of signal ambiguity. Am. J. Clin. Med. 9, 52–57 (2012)Google Scholar
  19. 19.
    Neilson, D.R., Freeman, R.K., Mangan, S.: Signal ambiguity resulting in unexpected outcome with external fetal heart rate monitoring. Am. J. Obstet. Gynecol. 198(6), 717–724 (2008)CrossRefGoogle Scholar
  20. 20.
    Martinek, R., Kelnar, M., Koudelka, P., Vanus, J., Bilik, P., Janku, P., Nazeran, H., Zidek, J.: A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator. Physiol. Meas. 37(2), 238 (2016)CrossRefGoogle Scholar
  21. 21.
    Martinek, R., Kelnar, M., Koudelka, P., Vanus, J., Bilík, P., Janku, P., Nazeran, H., Zidek, J.: Enhanced processing and analysis of multi-channel non-invasive abdominal foetal ECG signals during labor and delivery. Electron. Lett. 51(22), 1744–1746 (2015)CrossRefGoogle Scholar
  22. 22.
    Martinek, R., Kelnar, M., Vojcinak, P., Koudelka, P., Vanus, J., Bilík, P., Janku, P., Nazeran, H., Zidek, J.: Virtual simulator for the generation of patho-physiological foetal ECGs during the prenatal period. Electron. Lett. 51(22), 1738–1740 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VSB – Technical University of OstravaOstravaCzech Republic

Personalised recommendations