Skip to main content

Error Estimation Approach for Controlling the Communication Step-Size for Explicit Co-simulation Methods

  • Conference paper
  • First Online:
Book cover IUTAM Symposium on Solver-Coupling and Co-Simulation

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 35))

  • 433 Accesses

Abstract

In this paper, an approach for controlling the communication-step size in connection with explicit co-simulation methods is suggested. In the framework of the proposed communication-step size controller, each subsystem integration is carried out with two different explicit co-simulation methods. By comparing the variables for both integrations, an error estimator for the local error can be constructed. Making use of the estimated local error, a step-size controller for the communication step-size can be implemented. Examples are presented demonstrating the applicability and accuracy of the proposed communication-step size controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, vol. 45. Teubner, Stuttgart (1998)

    Book  Google Scholar 

  2. Gomes, C., et al.: Co-simulation: state of the art. arXiv:1702.00686 (2017)

  3. Gustafsson, K., Lundh, M., Söderlind, G.: API stepsize control for the numerical solution of ordinary differential equations. BIT Numer. Math. 28(2), 270–287 (1988)

    Google Scholar 

  4. Kübler, R., Schiehlen, W.: Two Methods of Simulator Coupling. Math. Comput. Model. Dyn. Syst. 6(2), 93–113 (2000)

    Article  Google Scholar 

  5. Meyer, T., Li, P., Lu, D., Schweizer, B.: Implicit co-simulation method for constraint coupling with improved stability behavior. Multibody Syst. Dyn. 1–27 (2018)

    Google Scholar 

  6. Milne, W. E.: Numerical integration of ordinary differential equations. Am. Math. Mon. 33(9), 455–460 (1926)

    Google Scholar 

  7. Schweizer, B., Li, P., Lu, D.: Explicit and implicit cosimulation methods: stability and convergence analysis for different solver coupling approaches. J. Comput. Nonlinear Dyn. 10(5), 051007 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Meyer .

Editor information

Editors and Affiliations

Appendix: Alternative Co-simulation Approach with Improved Convergence Order

Appendix: Alternative Co-simulation Approach with Improved Convergence Order

In Sect. 11.5.2, we have seen, that the local error of the position variables converges with order \(k+3\). However, the velocity variables converge only with order \(k+2\), which causes that the global error converges only with order \(k+1\). Combining the two methods described in Sect. 11.4 yields an alternative method (method 3), which may increase the convergence order of the local error of the velocity variables. Thus, the local error may converge with order \(k+3\) and consequently the global error may converge with order \(k+2\). We define the new polynomial

$$\begin{aligned} \mathbf {p}_{N+1}^\alpha \!\left( t\right)= & {} \alpha \mathbf {p}_{N+1}^{\mathrm {int}}\!\left( t\right) + \left( 1- \alpha \right) \mathbf {p}_{N+1}^{\mathrm {ext}}\!\left( t\right) , \end{aligned}$$
(11.55)

where \(\alpha \) is an arbitrary real number. For analyzing the consistency, we define

$$\begin{aligned} \mathbf {y}_{N+1}^\alpha:= & {} \mathbf {y}\!\left( T_N\right) + \int \limits _{T_N}^{T_{N+1}} \mathbf {F}^{\mathrm {co}}\!\left( t,\mathbf {y}\!\left( t\right) ,\mathbf {p}_{N+1}^\alpha \!\left( t\right) \right) \mathrm dt\, . \end{aligned}$$

We have

$$\begin{aligned} \begin{array}{rcl} \mathbf {y}_{N+1}^\alpha -\mathbf {y}\!\left( T_{N+1}\right) &{}=&{} \int \limits _{T_N}^{T_{N+1}}\mathbf {F}^{\mathrm {co}}\!\left( t,\mathbf {y}\!\left( t\right) ,\mathbf {p}_{N+1}^\alpha \!\left( t\right) \right) - \mathbf {F}^{\mathrm {co}}\!\left( t,\mathbf {y}\!\left( t\right) ,\mathbf {p}\!\left( t\right) \right) \mathrm dt\\ &{}=&{} \int \limits _{T_N}^{T_{N+1}}\mathbf {F}_{\mathbf {p}}^{\mathrm {co}}\!\left( t,\mathbf {y}\!\left( t\right) ,\mathbf {p}\!\left( t\right) \right) \left( \mathbf {p}_{N+1}^\alpha \!\left( t\right) - \mathbf {p}\!\left( t\right) \right) \mathrm dt+\mathcal O\!\left( H^{k+3}\right) \\ &{}=&{}\mathbf {F}_{\mathbf {p}}^{\mathrm {co}}\!\left( T_N,\mathbf {y}_N,\mathbf {u}_N\right) \int \limits _{T_N}^{T_{N+1}} \mathbf {p}_{N+1}^\alpha \!\left( t\right) - \mathbf {p}\!\left( t\right) \mathrm dt+\mathcal O\!\left( H^{k+3}\right) \\ &{}=&{}\mathbf {F}_{\mathbf {p}}^{\mathrm {co}}\!\left( T_N,\mathbf {y}_N,\mathbf {u}_N\right) \int \limits _{T_N}^{T_{N+1}} \mathbf {p}_{N+1}^\alpha \!\left( t\right) - \hat{\mathbf {p}}\!\left( t\right) \mathrm dt+\mathcal O\!\left( H^{k+3}\right) . \end{array} \end{aligned}$$
(11.56)

With the constants

$$\begin{aligned} D^i_{N+1} :=\int _{T_N}^{T_{N+1}}L^i_{N+1}\!\left( t\right) \mathrm dt \qquad \!\left( i\in \left\{ k,k+1\right\} \right) \end{aligned}$$
(11.57)

and with Eqs. (11.41) and (11.42), we obtain

$$\begin{aligned} \int \limits _{T_N}^{T_{N+1}} \mathbf {p}_{N+1}^\alpha \!\left( t\right) - \hat{\mathbf {p}}\!\left( t\right) \mathrm dt= & {} D^{k+1}_{N+1}- \alpha D^k_{N+1}\, , \end{aligned}$$
(11.58)

which vanishes for \(\alpha = \frac{D^{k+1}_{N+1}}{D^k_{N+1}}\). Together with Eq. (11.56), we get

$$\begin{aligned} \frac{1}{H}\left\| \mathbf {y}_{N+1}^\alpha -\mathbf {y}\!\left( T_{N+1}\right) \right\|= & {} \mathcal O\!\left( H^{k+2}\right) . \end{aligned}$$
(11.59)
Fig. 11.15
figure 15

Convergence of the local error of method 3 on position and velocity level

Fig. 11.16
figure 16

Convergence of the global error of method 3 on position and velocity level

Figure 11.15 shows the convergence of the local error on position and velocity level for method 3. The convergence plots confirm that the local error converges with order \(k+3\) on position and on velocity level. As expected, the global error converges with order \(k+2\), which can be seen in Fig. 11.16. To derive an error estimator, it seems straightforward to use method 1 as reference. Then, the error is estimated by

$$\begin{aligned} \hat{\varepsilon }_{N+1}^\alpha :=\frac{1}{\alpha }\!\left( 1-\frac{C^{k+1}_{N+1}}{C^k_{N+1}}\right) \left\| \mathbf {q}_{N+1}^\alpha -\mathbf {q}_{N+1}^{\mathrm {ext}}\right\| , \end{aligned}$$
(11.60)

where \(\mathbf {q}_{N+1}^\alpha \) is the numerical solution of the position variables of the simulations carried out with the polynomials \(\mathbf {p}_{N+1}^\alpha \!\left( t\right) \). Unfortunately, the local error is too badly estimated, if the predicted values \(\mathbf {u}_{N+1}^{\mathrm {pre}}\) (see Sect. 11.4.2) are computed with only \(k+2\) sampling points. A similar problem was already mentioned in Remark 11.2 (Sect. 11.7.2). Figure 11.17 shows the local error and the estimated local error. The simulations have been carried out with quadratic approximation polynomials (\(k=2\)). The predicted coupling values are extrapolated with four supporting points.

Fig. 11.17
figure 17

Comparison of the estimated local error to the real local error of method 3 carried out with quadratic approximation polynomials (\(k=2\)) and predicted values \(\mathbf {u}_{N+1}^{\mathrm {pre}}\) calculated with 4 sampling points; reference solution is carried out with method 1

To improve the error estimator, method 3 is modified by increasing the extrapolation order for calculating the predicted coupling values. As can be seen in Fig. 11.18, the error estimator is improved, if the predicted values are extrapolated by five sampling point.

Fig. 11.18
figure 18

Comparison of the estimated local error to the real local error of method 3 carried out with quadratic approximation polynomials (\(k=2\)) and predicted values \(\mathbf {u}_{N+1}^{\mathrm {pre}}\) calculated with 5 sampling points; reference solution is carried out with method 1

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer, T., Kraft, J., Lu, D., Schweizer, B. (2019). Error Estimation Approach for Controlling the Communication Step-Size for Explicit Co-simulation Methods. In: Schweizer, B. (eds) IUTAM Symposium on Solver-Coupling and Co-Simulation. IUTAM Bookseries, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-14883-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14883-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14882-9

  • Online ISBN: 978-3-030-14883-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics