Skip to main content

Tidal Forested Wetlands: Mechanisms, Threats, and Management Tools

  • Chapter
  • First Online:
Wetlands: Ecosystem Services, Restoration and Wise Use

Abstract

Tidally influenced coastal forested wetlands can be divided into two broad categories, mangroves and freshwater forested wetlands. These forested wetlands perform valuable ecosystem services, and both are endangered by threats of sea level rise and land use. Understanding the mechanisms that control the distribution of tidal forests has been greatly enhanced by innovation in measurement and modeling of tidal forcing brought about by satellite observation of sea level. Oceanographic hydrodynamic models can now be merged with riverine hydraulic models to address forcing functions in the upper estuary and tidal river. There are new opportunities to study these unique forested ecosystems in a context of (a) the physical driving mechanisms that control their distribution and (b) the anthropogenic and natural disturbances that impact these ecosystems. Remote sensing and geographic information system technology and hydrodynamic, hydraulic, and hydrologic modeling can and must be combined to understand the functioning of these dynamic systems and their interactions with the environment. This chapter summarizes the tidal process and ecosystem characteristics of tidal forested wetlands, with examples from eastern China and the Southeastern United States. The first example demonstrates the need for hydrodynamic modeling to correctly interpret a time series of satellite images in order to evaluate the impact of human management on tidal wetlands. The second examines both empirical data on tidal dynamics and geospatial modeling to examine effects of sea level rise on freshwater forested wetlands. A short review of two widely used large-scale hydrologic models is also provided for describing the flow transport in intertidal rivers, a transition between tidal estuaries and freshwater nontidal wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albain M, Legais JF, Prandi P, Marcos M, Fenoglio-Marc L, Dieng HB, Benevniste J, Cazenve A (2017) Satellite altimetry based sea level at global and regional scales. Surv Geophys 38:7–31

    Article  Google Scholar 

  • Alesheikh AA, Ghorbanali A, Nouri N (2007) Coastline change detection using remote sensing. Int J Environ Sci Technol 4(1):61–66

    Article  Google Scholar 

  • Algoni DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349. https://doi.org/10.1017/S0376892902000231

    Article  Google Scholar 

  • Amatya DM, Jha MK (2011) Evaluating SWAT model for a low gradient forested watershed in coastal South Carolina. Trans ASABE 54(6):2151–2163

    Article  Google Scholar 

  • Amatya DM, Chescheir GM, Fernandez GP, Skaggs RW, Birgand F, Gilliam JW (2003) Lumped parameter models for predicting nitrogen transport in lower coastal plain watersheds. Report No. 347, Water Resources Research Institute of University of the North Carolina, Raleigh, NC, p 118

    Google Scholar 

  • Amoah J, Amatya DM, Nnaji S (2012) Quantifying watershed depression storage: determination and application in a hydrologic model. Hydrol Process 27(17):2401–2413. https://doi.org/10.1002/hyp.9364

    Article  Google Scholar 

  • Anderson CJ, Lockaby BG (2011) Forested wetland communities as indicators of tidal influence along the Apalachicola River, Florida, USA. Wetlands 31:895–906

    Article  Google Scholar 

  • Baldwin AH (2007) Vegetation and seed bank studies of salt-pulsed swamps of the Nanticoke River, Chesapeake Bay. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 139–160

    Chapter  Google Scholar 

  • Baldwin AH, Barendregt A, Whigham DF (2009) Tidal freshwater wetlands—an introduction to the ecosystem. In: Barendregt A, Whigham DF, Baldwin AH (eds) Tidal freshwater wetlands. Backhuys Publishers, Leiden, pp 1–10

    Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Article  Google Scholar 

  • Barendregt A, Whigham DF, Baldwin AH (2009) Tidal freshwater wetlands. Backhuys Publishers, Leiden

    Google Scholar 

  • Batzer DP, Baldwin AH (2012) Wetland habitats of North America: ecology and conservation concerns. University of California Press, Berkeley, CA

    Google Scholar 

  • Blair AC, Sanger DM, White DL, Holland AF, Vandiver LA, Bowker C, White S (2012) Quantifying and simulating stormwater runoff in watersheds. Hydrol Process 28(3):559–569. https://doi.org/10.1002/hyp.9616

    Article  Google Scholar 

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps N (ed) Three-dimensional coastal ocean models, vol 4. American Geophysical Union, Washington, DC

    Chapter  Google Scholar 

  • Brinson MM (1995) The HGM approach explained. Natl Wetl Newsl 17:7–13

    Google Scholar 

  • Brinson MM, Bradshaw HD, Jones MN (1985) Transitions in forested wetlands along gradients of salinity and hydroperiod. J Elisha Mitchell Sci Soc 101:76–94

    Google Scholar 

  • Burger U, Rivera-Monroy VH, Doyle TW, Dahdous-Guebas F, Duke NEC, Fontalzo-Heraldo ML, Hildenbrandt H, Koedam N, Mehlig U, Piou C, Twilley RR (2008) Advances and limitations of individual-based models to analyze and predict dynamics of mangrove forests: a review. Aquat Bot 89:260–274

    Article  Google Scholar 

  • Cai H, Savenije HHG, Toffolon M (2014) Linking the river to the estuary: influence of river discharge on tidal damping. Hydrol Earth Syst Sci 18:287–304. https://doi.org/10.5194/hess-18-287-2014

    Article  Google Scholar 

  • Canestrelli A, Fagherazzi S, Defina A, Lanzoni S (2010) Tidal hydrodynamics and erosional power in the Fly River delta, Papua New Guinea. J Geophys Res 115:F04033. https://doi.org/10.1029/2009JF001355

    Article  Google Scholar 

  • Carter RWG (1990) Coastal environments: an introduction to the physical, ecological and cultural systems of coastlines. Academic, London

    Google Scholar 

  • Chen JY, Zhu HF, Dong YF, Sun JM (1985) Development of the Changjiang estuary and its submerged delta. Cont Shelf Res 4(1/2):47–56

    CAS  Google Scholar 

  • Conner WH, Inabinette LW (2005) Identification of salt tolerant bald cypress (Taxodium distichum (L.) Rich) for planting in coastal areas. New For 29:305–312

    Article  Google Scholar 

  • Conner WH, Doyle TW, Krauss KW (eds) (2007) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dorcrecht

    Google Scholar 

  • Cooke CQ (1936) Geology of the coastal plain of South Carolina. Bulletin 867. US Geological Survey, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Cormier N, Krauss KW, Conner WH (2013) Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling. Estuar Coasts 36(3):533–546

    Article  CAS  Google Scholar 

  • Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7(2):73–78. https://doi.org/10.1890/070219

    Article  Google Scholar 

  • Czwartacki BJ (2013) Time and tide: understanding the water dynamics in a tidal freshwater forested wetland. M.S. thesis, Graduate School, College of Charleston, Charleston, SC, p 129

    Google Scholar 

  • Dai Z, Li C, Trettin CC, Sun G, Amatya DM, Li H (2010) Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain. Hydrol Earth Syst Sci 14:1033–1046

    Article  Google Scholar 

  • Dai Z, Trettin CC, Li C, Li H, Sun G, Amatya DM (2011) Effect of assessment scale on spatial and temporal variations in CH4, CO2, and N2O fluxes in a forested wetland. Water Air Soil Pollut 223(1):253–265. https://doi.org/10.1007/s11270-011-0855-0

    Article  CAS  Google Scholar 

  • Dame R, Alber M, Allen D, Mallin M, Montague C, Lewitus A, Chalmers A, Gardner LR, Gilman C, Kjerfve B, Pickney J, Smith N (2000) Estuaries of the South Atlantic Coast of North America: their geographical structure. Estuaries 23:793–819

    Article  CAS  Google Scholar 

  • Darwin GH (1901) The tides. John Murray, London, p 346

    Google Scholar 

  • Day RH, Williams TM, Swarzenski CM (2007) Hydrology of tidal freshwater forested wetlands of the Southeastern United States. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 29–63

    Chapter  Google Scholar 

  • Dellepiane S, De Laurentiis R, Giordano F (2004) Coastline extraction from SAR images and a method for the evaluation of the coastline precision. Pattern Recogn Lett 25(13):1461–1470

    Article  Google Scholar 

  • DeSantis LR, Bhotika S, Williams K, Putz FE (2007) Sea-level rise and drought interactions accelerate forest decline on the Gulf Coast of Florida, USA. Glob Chang Biol 13:2349–2360

    Article  Google Scholar 

  • Diefenderfer HL, Coleman AM, Borde AB, Dinks IA (2008) Hydraulic geometry and microtopography if tidal forested freshwater wetlands and implications for restoration. Ecohydrol Hydrobiol 8:339–361. https://doi.org/10.2478/v10104-009-0027-7

    Article  Google Scholar 

  • Doodson AT (1921) The harmonic development of the tide-generating potential. Proc R Soc Lond A 100:305–329. https://doi.org/10.1098/rspa.1921.0088. http://rspa.royalsocietypublishing.org/. Accessed 18 Apr 2018

    Article  Google Scholar 

  • Doyle TW, Conner WH, Ratard M, Inabinette LW (2007) Assessing the impact of tidal flooding and salinity on long-term growth of bald cypress under changing climate and riverflow. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 411–445

    Chapter  Google Scholar 

  • DuBarry AP Jr (1963) Germination of bottomland tree seed while immersed in water. J For 61:225–226

    Google Scholar 

  • Duberstein JA (2011) Composition and ecophysiological proficiency of tidal freshwater forested wetlands: investigating basin, landscape, and microtopographical scales. Ph.D. thesis, Clemson University, Clemson, SC

    Google Scholar 

  • Duberstein J, Kitchens WM (2007) Community composition of select areas of freshwater tidal forest along the Savannah River. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, New York, pp 321–348

    Google Scholar 

  • Effler RS, Shaffer GP, Hoeppner SS, Goyer RA (2007) Ecology of the Maurepas Swamp: effects of salinity, nutrients, and insect defoliation. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 349–384

    Chapter  Google Scholar 

  • Egbert GD, Erofeeva SY, Ray RD (2010) Assimilation of altimetry data for nonlinear shallow-water tides: quarter-diurnal tides of the Northwest European Shelf. Cont Shelf Res 30(6):668–679. https://doi.org/10.1016/j.csr.2009.10.011

    Article  Google Scholar 

  • Ekman VW (1905) On the influence of the earth’s rotation on ocean currents (Arkiv för Matematik Astronomi och Fysik band 2 no. 11 Upsalla Sweden Almqvist and Wiksells Boktryckeri-A.-B)

    Google Scholar 

  • Ekman M (1993) A concise history of the theory of tides, precession–nutation and polar motion (from antiquity to 1950). Surv Geophys 14:585–617

    Article  Google Scholar 

  • Ellis K, Callahan TJ, Greenfield DI, Sanger D, Robinson J, Jones M (2017) Measuring and modeling flow rates in tidal creeks: case study from the central coast of South Carolina. J S Carol Water Res 4(1):21–39

    Google Scholar 

  • Ensign SH, Noe GB, Hupp CR, Fagherazzi S (2012) A meeting of the waters: interdisciplinary challenges and opportunities in tidal rivers. EOS Trans Am Geophys Union 93(45):455–456

    Article  Google Scholar 

  • Ensign SH, Hupp CR, Noe GB, Krauss KW, Stagg CL (2014a) Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA. Estuar Coasts 37(5):1107–1119

    Article  CAS  Google Scholar 

  • Ensign SH, Noe GB, Hupp CR (2014b) Linking channel hydrology with riparian wetland accretion in tidal rivers. J Geophys Res Earth Surf 119:28–44. https://doi.org/10.1002/2013JF002737

    Article  Google Scholar 

  • Ensign SH, Noe GB, Hupp CR, Skalak KJ (2015) Head-of-tide bottleneck of particulate material transport from watersheds to estuaries. Geophys Res Lett 42. https://doi.org/10.1002/2015GL066830

    Article  Google Scholar 

  • Fang G, Wang Y, Wei Z, Choi BH, Wang X, Wang J (2004) Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. J Geophys Res Atmos 109(C11):227–251. https://doi.org/10.1029/2004JC002484

    Article  Google Scholar 

  • Fleckenstein EL (2007) The influence of salinity on the germination and distribution of Taxodium distichum (L.) Rich. bald cypress, along the Northeast Cape Fear River. MSc thesis, University of North Carolina Wilmington, Wilmington, NC

    Google Scholar 

  • Gao S (2009) Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast eastern China. Cont Shelf Res 29:192–1936

    Article  Google Scholar 

  • Gardner LR, Bohn M (1980) Geomorphic and hydraulic evolution of tidal creeks on a subsiding beach ridge plain, North Inlet, S.C. Mar Geol 34: M91–M97

    Google Scholar 

  • Gardner LR, Smith BR, Michener WK (1992) Soil evolution along a forest salt-marsh transect under a regime of slowly rising sea-level, Southeastern United States. Geoderma 55:141–157

    Article  Google Scholar 

  • Geleynse N, Storms JE, Walstra DJR, Jagers HA, Wang ZB, Stive MJ (2011) Controls on river delta formation; insights from numerical modelling. Earth Planet Sci Lett 302(1):217–226

    Article  CAS  Google Scholar 

  • Gens R (2010) Remote sensing of coastlines: detection, extraction and monitoring. Int J Remote Sens 31(7):819–1836

    Article  Google Scholar 

  • Geselbracht L, Freeman K, Kelly E, Gordon DR, Putz FE (2011) Retrospective and prospective model simulations of sea level rise impacts on Gulf of Mexico coastal marshes and forests in Waccasassa Bay, Florida. Clim Chang 107:35–57

    Article  Google Scholar 

  • Golden HE, Lane CR, Amatya D, Bandilla K, Raanan-Kiperwas H, Ssegane H (2014) Modeling watershed-scale hydrologic connections between geographically isolated wetlands and surface water systems. J Environ Model Softw 53:190–206

    Article  Google Scholar 

  • Hackney CT, Avery CB (2015) Tidal wetland community response to varying levels of flooding by saline water. Wetlands 35:227–236. https://doi.org/10.1007/s13157-014-0597-z

    Article  Google Scholar 

  • Hackney CT, Avery GB, Leonard LA, Posey M, Alphin T (2007) Biological, chemical, and physical characteristics of tidal freshwater swamp forests of the Lower Cape Fear River/Estuary, North Carolina. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 183–221

    Chapter  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa CD, Bruno JF et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  Google Scholar 

  • Harms WR, Schreuder HT, Hook DD, Brown CL, Shropshire FW (1980) The effects of flooding on the swamp forest in Lake Ocklawaha, Florida. Ecology 61:1412–1421

    Article  Google Scholar 

  • Hoitlink AJF, Jay DA (2016) Tidal river dynamics: implications for deltas. Rev Geophys 54:240–272. https://doi.org/10.1002/2015RG000507

    Article  Google Scholar 

  • Hook DD (1984) Waterlogging tolerance of lowland tree species of the south. South J Appl For 8:136–149

    Google Scholar 

  • Horrevoets AC, Savenije HHG, Schuurman JN, Graas S (2004) The influence of river discharge on tidal damping in alluvial estuaries. J Hydrol 294:213–228

    Article  Google Scholar 

  • Jayakaran AD, Williams TM, Conner WH, Hitchcock DR, Song B, Chow AT, Smith EM (2014) Monitoring water quality changes in a forested freshwater wetland threatened by salinity. In: Proceedings of the 2014 South Carolina Water Resources Conference, held October 15–16, 2014 at the Columbia Metropolitan Convention Center

    Google Scholar 

  • Jelesnianski CP, Chen J, Shaffer WA (1992) SLOSH: sea, lake and overland surges from hurricanes. National Oceanic and Atmospheric Administration, Washington, DC

    Google Scholar 

  • Jordi A, Wang DP (2012) sbPOM: a parallel implementation of Princeton Ocean Model. Environ Model Softw 38:59–61. https://doi.org/10.1016/j.envsoft.2012.05.013

    Article  Google Scholar 

  • Kana TW, Siah SJ, Williams ML, Sexton WJ (1984) Analysis of historical erosion rates and prediction of future shoreline positions, Myrtle Beach, South Carolina. Summary Rept. for South Carolina Coastal Council and City of Myrtle Beach, RPI, Columbia, S.C., p 113

    Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (eds) (2009) Global climate change impacts in the United States. Cambridge University Press, New York

    Google Scholar 

  • Keeland BD, McCoy JW (2007) Plant community composition of a tidally influenced, remnant Atlantic white cedar stand in Mississippi. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 89–111

    Chapter  Google Scholar 

  • Kim SC (2013) Evaluation of a three-dimensional hydrodynamic model applied to Chesapeake Bay through long-term simulation of transport processes. J Am Water Res Assoc:1–13. https://doi.org/10.1111/jawr.12113

  • Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60. https://doi.org/10.1038/nature12856

    Article  CAS  PubMed  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401. https://doi.org/10.1029/2010GL045489

    Article  Google Scholar 

  • Krauss KW, Duberstein JA, Doyle TW, Conner WH, Day RH, Inabinette LW, Whitbeck JL (2009) Site condition, structure, and growth of bald cypress along tidal/non-tidal salinity gradients. Wetlands 29:505–519

    Article  Google Scholar 

  • Kuang C, Chen W, Gu J, Su TC, Song H, Ma Y, Dong Z (2017) River discharge contribution to sea level rise in the Yangtze River Estuary, China. Cont Shelf Res 134:63–75

    Article  Google Scholar 

  • Kurz H, Wagner KA (1957) Tidal marshes of the Gulf and Atlantic coasts of northern Florida and Charleston, South Carolina. Florida State University, Studies No. 24

    Google Scholar 

  • Laderman AD (1989) The ecology of Atlantic white cedar wetlands: a community profile. Biological Report 85(7.21). U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Langbein WB (1963) The hydraulic geometry of a shallow estuary. Bull Int Assoc Sci Hydrol 8:84–94

    Article  Google Scholar 

  • Larson M, Sato S (2017) Coastal hydrology, Chapter 86. In: Singh VP (ed) Handbook of hydrology, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Light HM, Darst MR, Mattson RA (2007) Ecological characteristics of tidal freshwater forests along the lower Suwannee River, Florida. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 291–320

    Chapter  Google Scholar 

  • Liu Y, Kumar M (2016) Role of meteorological controls on interannual variations in wet-period characteristics of wetlands. Water Resour Res 52:5056–5074. https://doi.org/10.1002/2015WR018493

    Article  Google Scholar 

  • Liu Z, Li F, Li N, Wang R, Zhang H (2016) A novel region-merging approach for coastline extraction from Sentinel-1A IW Mode SAR imagery. IEEE Geosci Remote Sens Lett 13(3):324–328

    Article  Google Scholar 

  • Liu X, Conner WH, Song B, Jayakaran AD (2017) Forest composition and growth in a forested wetland community across a salinity gradient in South Carolina. For Ecol Manag 389:211–219

    Article  Google Scholar 

  • Lockaby BG, Walbridge MR (1998) Biogeochemistry. In: Messina MG, Conner WH (eds) Southern forested wetlands: ecology and management. Lewis Publishers, Boca Raton, FL, pp 149–172

    Google Scholar 

  • Luan HL, Ding PX, Wang ZB, Ge JZ, Yang SL (2016) Decadal morphological evolution of the Yangtze Estuary in response to river input changes and estuary engineering projects. Geomorphology 266:12–23

    Article  Google Scholar 

  • Lugo AE, Brown S, Brinson MM (1988) Forested wetlands in freshwater and salt-water environments. Limnol Oceanogr 33:894–909

    CAS  Google Scholar 

  • Macmillan DH (1966) Tides. American Elsevier Publishing Company, New York, p 240

    Google Scholar 

  • Matthews JB, Matthews JBR (2014) Physics of climate change: harmonic and exponential processes from in situ ocean time series observations show rapid asymmetric warming. J Adv Phy 2:1137–1171. http://www.cirjap.com, japeditor@gmail.com

    Google Scholar 

  • McLeod KW, McCarron JK, Conner WH (1996) Effects of flooding and salinity on photosynthesis and water relations of four southeastern coastal plain forest species. Wetl Ecol Manag 4:31–42

    Article  Google Scholar 

  • Meselhe EA, Habib EH (2005) Hydrologic investigation of low gradient watersheds. A final report submitted by University of Louisiana, Lafayette, LA to U.S. Army Research Office, Research Triangle Park, NC

    Google Scholar 

  • Meybeck M (2003) Global analysis of river systems: from Earth system controls to Anthropocene 4 syndromes. Philos Trans R Soc B. https://doi.org/10.1098/rstb.2003.1379

    Article  CAS  PubMed  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York

    Google Scholar 

  • Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L (2009) Wetland Ecosystems. Wiley, Hoboken, NJ

    Google Scholar 

  • Moore JH, Carter JH (1987) Habitats of white cedar in North Carolina. In: Laderman AD (ed) Atlantic white cedar wetlands. Westview Press, Boulder, CO, pp 177–188

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Najjar RG, Walker HA, Anderson PJ, Barron EJ, Bord RJ, Gibson JR, Polsky CD (2000) The potential impacts of climate change on the mid-Atlantic coastal region. Clim Res 14(3):219–233

    Article  Google Scholar 

  • NOAA (National Oceanographic and Atmospheric Agency) (2017) Tides and currents map. https://tidesandcurrents.noaa.gov/gmap3/. Accessed 1 Nov 2017

  • Noe GB, Krauss KW, Lockaby BG, Conner WH, Hupp CR (2013) The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 114:225–244

    Article  CAS  Google Scholar 

  • Noe GB, Hupp CR, Bernhardt CE, Krauss KW (2016) Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise. Estuar Coasts 39:1006–1019

    Article  Google Scholar 

  • Nunziata F, Buono A, Migliaccio M (2016) A new look at the old sea oil slick observation problem: opportunities and pitfalls of SAR polarimetry. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, pp 4027–4030. https://doi.org/10.1109/IGARSS.2016.7730047

  • Nuttle WK, Hemond HF (1988) Salt marsh hydrology: implications for biogeochemical fluxes to the atmosphere and estuaries. Glob Biogeochem Cycles 2(2):91–114

    Article  Google Scholar 

  • Odum WE (1988) Comparative ecology of tidal freshwater and salt marshes. Annu Rev Ecol Syst 19:147–176

    Article  Google Scholar 

  • Odum WE, Smith TJ III, Hoover JK, McIvor CC (1984) The ecology of tidal freshwater marshes of the United States east coast: a community profile. Report FWS/OBS-83/17. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Oey LY (2005) A wetting and drying scheme for POM. Ocean Model 9(2):133–115. https://doi.org/10.1016/j.ocemod.2004.06.002

    Article  Google Scholar 

  • Oey LY, Ezer T, Hu C, Muller-Karger FE (2007) Baroclinic tidal flows and inundation processes in Cook, Inlet, Alaska: numerical modeling and satellite observation. Ocean Dyn 57:205–221

    Article  Google Scholar 

  • Officer CB (1976) Physical oceanography of estuaries (and associated coastal waters). Wiley, New York

    Google Scholar 

  • Ozalp M, Conner WH, Lockaby BG (2007) Above-ground productivity and litter decomposition in a tidal freshwater forested wetland on Bull Island, SC, USA. For Ecol Manag 245:31–43

    Article  Google Scholar 

  • Patchineelam SM, Kjerfve B (2004) Suspended sediment variability on seasonal and tidal time scales in the Winyah Bay estuary, South Carolina, USA. Estuar Coast Shelf Sci 59:307–318

    Article  Google Scholar 

  • Perry L, Williams K (1996) Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto). Oecologia 105:428–434

    Article  CAS  PubMed  Google Scholar 

  • Pezeshki SR, DeLaune RD, Patrick WH (1987) Response of bald cypress (Taxodium distichum L. var. distichum) to increases in flooding salinity in Louisiana’s Mississippi River Deltaic Plain. Wetlands 7:1–10

    Article  Google Scholar 

  • Pierfelice KN, Lockaby BG, Krauss KW, Conner WH, Noe GB, Ricker MC (2017) Salinity influences on above- and belowground net primary productivity in tidal wetlands. J Hydrol Eng 22(1):D5015002. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001223

    Article  Google Scholar 

  • Rheinhardt R (1992) A multivariate analysis of vegetation patterns in tidal freshwater swamps of lower Chesapeake Bay, USA. Bull Torrey Bot Club 119:192–207

    Article  Google Scholar 

  • Samadi S, Tufford DL, Carbone GJ (2017) Assessing parameter uncertainty of a semi-distributed hydrology model for a shallow aquifer dominated environmental system. J Am Water Res Assoc 53:1368–1389. https://doi.org/10.1111/1752-1688.12596

    Article  Google Scholar 

  • Savenije HHG (1992) Lagrangian solution of St. Venant’s equations for alluvial estuary. J Hydraul Eng 118:1153–1163

    Article  Google Scholar 

  • Savenije HHG (2005) Salinity and tides in alluvial estuaries. Elsevier, Amsterdam

    Google Scholar 

  • Savenije HHG (2015) Prediction in ungauged estuaries: an integrated theory. Water Resour Res 51:2464–2476. https://doi.org/10.1002/2015WR016936

    Article  Google Scholar 

  • Savenije HHG, Toffolon M, Haas J, Veling EJM (2008) Analytical description of tidal dynamics in convergent estuaries. J Geophys Res 113:C10025. https://doi.org/10.1029/2007JC004408

    Article  Google Scholar 

  • Shaffer GP, Perkins TE, Hoeppner S, Howell S, Benard H, Parsons AC (2003) Ecosystem health of the Maurepas Swamp: feasibility and projected benefits of a freshwater diversion. Final Report. Environmental Protection Agency Region 6, Dallas, TX

    Google Scholar 

  • Shaffer GP, Wood WB, Hoeppner SS, Perkins TE, Zoller J, Kandalepas D (2009) Degradation of baldcypress—water tupelo swamp to marsh and open water in southeastern Louisiana, U.S.A.: an irreversible trajectory? J Coast Res Spec Issue 54:152–165

    Article  Google Scholar 

  • Sharitz RR, Mitsch WJ (1993) Southern floodplain forests. In: Martin WH, Boyce SG, Echternacht AC (eds) Biodiversity of the Southeastern United States: lowland terrestrial communities. Wiley, New York, pp 311–372

    Google Scholar 

  • Song D, Wang XH, Zhu X, Bao X (2013) Modelling studies of the far field effects of tidal flat reclamation on tidal dynamics in the East China Sea. Estuar Coast Shelf Sci 133:147–160

    Article  Google Scholar 

  • Teas HJ (2013) Ecology and biology of mangroves. Springer Science and Business Media, Dordrecht

    Google Scholar 

  • Thompson JR, Sorenson HR, Gavin H, Refsgaard A (2004) Application of the coupled MIKESHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. J Hydrol 293:151–179

    Article  Google Scholar 

  • Tomlinson PB (2016) The botany of mangroves, 2nd edn. Cambridge University Press, London

    Book  Google Scholar 

  • Torres R (2017) Channel geomorphology along fluvial-tidal transition, Santee River, USA. Geol Soc Am Bull 129:1681–1691. https://doi.org/10.1130/B31649

    Article  Google Scholar 

  • Torres R, Goni MA, Voulgaris G, Lovell CR, Morris JT (2004) Effects of low tide rainfall on intertidal zone material cycling, Chapter 6. In: The Ecomorphology of Tidal Marshes, Coastal and Estuarine Studies 59, American Geophysical Union, pp 93–114. https://doi.org/10.1029/59CE07

  • Twilley RR, Chen R (1998) A water budget and a hydrology model of a basin mangrove forest in Rookery Bay in Florida. Mar Freshw Res 49:309–323

    Article  CAS  Google Scholar 

  • Twilley RR, Day JW (2012) Mangrove wetlands. In: Day JW, Crump BC, Kemp WM, Yáñez-Arancibia A (eds) Estuarine Ecology, 2nd edn. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781118412787.ch7

    Chapter  Google Scholar 

  • Twilley RR, R-Monroy VH (2005) Developing performance measures of mangrove wetlands using simulation models of hydrology, biogeochemistry, and community dynamics. J Coast Res SI40:79–93

    Google Scholar 

  • USACOE (2017) Charleston Harbor, SC, Regional Sediment Management study; beneficial use of dredged material through nearshore placement. Prepared by ERDC/CHL as Final Report # TR-17-7 in May 2017 for U.S. Army Corps of Engineers, Washington, DC, 20314-1000

    Google Scholar 

  • USGS, United States Geologic Survey (2017) Current water data for the nation. Station 02135200, Pee Dee River at Hwy 701 near Bucksport SC. https://waterdata.usgs.gov/sc/nwis/uv?site_no=02135200. Accessed 11 Nov 2017

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561

    Article  PubMed  CAS  Google Scholar 

  • Williams K, Ewel KC, Stumpf RP, Putz FE, Workman TW (1999a) Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80:2045–2063

    Article  Google Scholar 

  • Williams K, Pinzon ZS, Stumpf RP, Raabe EA (1999b) Sea-level rise and coastal forests on the Gulf of Mexico. US Geological Survey. Open-File Report 99-441

    Google Scholar 

  • Williams K, MacDonald M, McPherson K, Mirti TH (2007) Ecology of the coastal edge of hydric hammocks on the Gulf coast of Florida. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 255–289

    Chapter  Google Scholar 

  • Williams TM, Chow AT, Song B (2012) Historical visualization evidence on forest salt marsh transition in Winyah Bay, South Carolina: a retrospective study in sea level rise. Wetland Sci Pract 29:5–17

    Google Scholar 

  • Wolanski E (2007) Estuarine ecohydrology. Elsevier, Amsterdam

    Google Scholar 

  • Wolaver TG, Dame RF, Spurrier JD, Miller AB (1988) Bly Creek ecosystem study – inorganic sediment transport within a euhaline salt marsh basin, North Inlet, South Carolina. J Coast Res 4:607–615

    Google Scholar 

  • Woodruff JD, Irish JL, Camargo SJ (2013) Coastal flooding by tropical cyclones and sea level rise. Nature 504:44–52. https://doi.org/10.1038/nature12855

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Johnson CA (2008) Hydrologic comparison between a forested and wetland/lake dominated watershed using SWAT. Hydrol Process 22:1431–1442

    Article  Google Scholar 

  • Wu K, Xu YJ (2006) Evaluation of the applicability of the SWAT model for coastal watersheds in southeastern Louisiana. J Am Water Resour Assoc 42(5):1247–1260

    Article  Google Scholar 

  • WWAP (World Water Assessment Programme) (2009) Water in a changing world. The Third 6 World Water Development Report. UNESCO, Paris

    Google Scholar 

  • Xiao C, Zhang K, Shen J (2006) CEST: a three-dimensional coastal and estuarine storm tide model. International Hurricane Research Center, Florida International University, Miami, FL, p 20

    Google Scholar 

  • Yang SL, Milliman JD, Xu KH, Deng B, Zhang XY, Luo XX (2014) Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth Sci Rev 138:469–486

    Article  Google Scholar 

  • Young PJ, Keeland BD, Sharitz RR (1995) Growth response of bald cypress [Taxodium distichum (L.) Rich.] to an altered hydrologic regime. Am Midl Nat 133:206–212

    Article  Google Scholar 

  • Zhang RS (1984) The formation of the Yellow River delta and the coastal plain of northern Jiangsu. Acta Geograph Sin 39(2):173–184. (In Chinese with English abstract)

    Google Scholar 

  • Zhang T, Yang X, Hu S, Su F (2013) Extraction of coastline in aquaculture coast from multispectral remote sensing images: object-based region growing integrating edge detection. Remote Sens 5(9):4470–4487

    Article  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for their thoughtful comments and suggestions, which improved the manuscript. Part of the research included in this review was funded by the US Geological Survey, Climate and Land Use Change Research and Development Program, and also supported in part by the National Institute of Food and Agriculture, US Department of Agriculture, under award number SCZ-1700531. Technical Contribution No. 6654 of the Clemson University Experiment Station. Thanks are also due to USDA Forest Service Southern Research Station and 10th INTECOL Conference for their support of the INTECOL special session followed by initiating this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Amatya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, T. et al. (2019). Tidal Forested Wetlands: Mechanisms, Threats, and Management Tools. In: An, S., Verhoeven, J. (eds) Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-14861-4_6

Download citation

Publish with us

Policies and ethics