Skip to main content

Building Resiliency to Climate Change Through Wetland Management and Restoration

  • Chapter
  • First Online:
Wetlands: Ecosystem Services, Restoration and Wise Use

Abstract

Never before has the resiliency of wetland ecosystems to climatic and anthropogenic stressors been more important or more recognized by those who study these unique ecosystems. The goal of this chapter is to discuss a variety of management and restoration approaches to building resiliency in wetlands that are subjected to changing conditions. We examine wetland responses to changing climatic and hydrologic conditions at multiple spatial (global to microscopic level) and temporal (100-million-year to 1-year) scales which informs our perspective on predicting future wetland responses to both anthropogenic and natural perturbations. Additionally, we introduce the utility of having advanced tools for monitoring changes at the biogeochemical scale, which is likely to be one of the first indicators of change to be detected. The case studies that we present enable us to learn techniques and approaches to address current and future stressors (natural and anthropogenic) on both coastal and inland wetland ecosystems and contain the common thread of carbon sequestration and biogeochemical cycling. We focus on the functional roles of wetlands in providing ecosystem services and how those ecosystem services are best protected, managed, and restored in light of a variety of stressors, such as global climate change, increased water use and demand, and land use changes. Wise-use approaches that enhance wetland biodiversity and resiliency to these changes and impacts are discussed, as are wetland-specific ecosystem services that provide enhanced water quality, water supply, flood protection, storm damage protection, pollution attenuation, and climate change resiliency for adjacent human communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Development of climate change scenarios requires the selection of emission scenarios that are based on plausible projections of future emission of greenhouse gases and aerosols. The Arctic Climate Impact Assessment (2005) used the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES), which consisted of the A2 and B2 emission scenarios. The A2 emission scenario emphasized economic development and continuous population growth, whereas the B2 scenario focused more on environmental concerns, intermediate levels of economic growth, and population growth that is slower than the A2 scenario.

References

  • Adamus PR (2007) Best available science for wetlands of Island County, Washington: review of published literature a report prepared in response to critical areas ordinance updating requirements for wetlands Island County Department of Planning and Community Development. http://people.oregonstate.edu/~adamusp/Puget Sound BAS & Critical Areas/IslandCountyWA/Adamus2006_IslandCoBAS.pdf. Accessed 21 Jan 2018

  • Adler A, Karacic A, Weih M (2008) Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation. Plant Soil 305:189–206

    Article  CAS  Google Scholar 

  • Agerer R (1987) Colour atlas of ectomycorrhizae. Einhorn, Schwäbisch Gmünd

    Google Scholar 

  • AMAP (2017) Snow, water, ice and permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway

    Google Scholar 

  • Amelung W, Rodionov A, Urusevskaja IS, Haumaier L, Zech W (2001) Forms of organic phosphorus in zonal steppe soils of Russia assessed by 31P NMR. Geoderma 103:335–350

    Article  CAS  Google Scholar 

  • Anderson DW, Saggar S, Bettany JR, Stewart JWB (1981) Particle size fractions and their use in studies of soil organic matter: I. The nature and distribution of forms of carbon, nitrogen and sulfur. Soil Sci Soc Am J 45:767–772

    Article  CAS  Google Scholar 

  • Anderson MG, Barnett A, Clark M, Sheldon AO, Prince J, Vickery B (2016a) Resilient and connected landscapes for terrestrial conservation. The Nature Conservancy, Eastern Conservation Science, Boston, MA. http://nwblcc.org/wp-content/uploads/2016/08/Anderson-et-al.-2016-Resilient_and_Connected_Landscapes_For_Terrestial_Conservation.pdf. Accessed 21 Jan 2018

    Google Scholar 

  • Anderson MG, Barnett A, Clark M, Ferree C, Sheldon AO, Prince J (2016b) Resilient sites for terrestrial conservation in Eastern North America 2016 Edition. The Nature Conservancy, Eastern Conservation Science, Boston, MA. http://climatechange.lta.org/wp-content/uploads/cct/2016/07/Resilient_Sites_for_Terrestrial_Conservation.pdf. Accessed 21 Jan 2018

    Google Scholar 

  • Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjálmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 653–685

    Google Scholar 

  • Arbuzov SI, Volostnov AV, Rikhvanov LP, Mezhibor AM, Ilenok SS (2011) Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia). Int J Coal Geol 86:318–328

    Article  CAS  Google Scholar 

  • Arctic Climate Impact Assessment (2005) Arctic climate impact assessment. ACIA overview report. Cambridge University Press, Cambridge

    Google Scholar 

  • Balmford A, Bruner A, Cooper P, Costanza R, Farber S, Green RE, Jenkins M, Jefferiss P, Jessamy V, Madden J, Munro K, Myers N, Naeem S, Paavola J, Rayment M, Rosendo S, Roughgarden J, Trumper K, Turner RK (2002) Economic reasons for conserving wild nature. Science 297:950–953

    Article  CAS  PubMed  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Article  Google Scholar 

  • Beauregard F, de Blois S (2014) Beyond a climate centric view of plant distribution: edaphic variables add value to distribution models. PLoS One 9(3):e92642. https://doi.org/10.1371/journal.pone.0092642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benitez-Nelson CR, O’Neill L, Kolowith LC, Pellechia PJ, Thunell R (2004) Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol Oceanogr 49:1593–1604

    Article  CAS  Google Scholar 

  • Bochnak AMK, Osborne TZ, Ponzio KJ (2015) Balancing water supply and flood control management with the protection of peat-based subtropical wetlands in Florida. Paper presented at the annual conference of the Society of Wetland Scientists, Providence, RI, USA, 3 June 2015

    Google Scholar 

  • Boisvert-Marsh L, Périé C, de Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5:83. https://doi.org/10.1890/ES14-00111.1

    Article  Google Scholar 

  • Boucek RE, Rehage JS (2015) A tale of two fishes: using recreational angler records to examine the link between fish catches and floodplain connections in a subtropical river. Estuar Coast 38(S1):124–135

    Article  CAS  Google Scholar 

  • Bowman RA, Reeder JD, Lober RW (1990) Changes in soil properties in a central plains rangeland soil after 3, 20 and 60 years of cultivation. Soil Sci 150:851–857

    Article  CAS  Google Scholar 

  • Brenner M, Schelske CL, Keenan LW (2001) Historical rates of sediment and nutrient accumulation in marshes of the Upper St. Johns River, Florida, USA. J Paleolimnol 26:241–257

    Article  Google Scholar 

  • Bridges EM (1978) Interactions of soil and mankind in Britain. J Soil Sci 29:125–139

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26(4):889–916. https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2

    Article  Google Scholar 

  • Bridgham SD, Moore TR, Richardson CJ, Roulet NT (2014) Errors in greenhouse forcing and soil carbon sequestration estimates in freshwater wetlands: a comment on Mitsch et al. 2013. Landscape Ecol 29(9):1481–1485. https://doi.org/10.1007/s10980-014-0067-2

    Article  Google Scholar 

  • Brinson MM (1993) A hydrogeomorphic classification for wetlands. Wetlands Research Program Technical Report WRP-DE-4, U.S. Army Corps of Engineers, Vicksburg, MS

    Google Scholar 

  • Brinson MM, Rheinhardt RD (1996) The role of reference wetlands in functional assessment and mitigation. Ecol Appl 6:69–76

    Article  Google Scholar 

  • Bruland GL, Hanchey MF, Richardson CJ (2003) Effects of agriculture and wetland restoration on hydrology, soils, and water quality of a Carolina bay complex. Wetl Ecol Manag 11:141–156

    Article  CAS  Google Scholar 

  • Brye KR, Andraski TW, Jarrell WM, Bundy LG, Norman JM (2002) Phosphorus leaching under a restored tallgrass prairie and corn agroecosystems. J Environ Qual 31:769–781

    Article  CAS  PubMed  Google Scholar 

  • Budny ML, Benscoter BW (2016) Shrub encroachment increases transpiration water loss from a subtropical wetland. Wetlands 36:631–638

    Article  Google Scholar 

  • Cade-Menun BJ (2005) Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 66:359–371

    Article  CAS  PubMed  Google Scholar 

  • Cade-Menun BJ, Berch SM, Preston CM, Lavkulich LM (2000) Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types. Can J Forest Res 30:1714–1725

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Navaratnam JA, Walbridge MR (2006) Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environ Sci Technol 40:7874–7880

    Article  CAS  PubMed  Google Scholar 

  • Cao M, Gregson K, Marshall SJ (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmos Environ 32:3293–3299

    Article  CAS  Google Scholar 

  • Carman R, Edlund G, Damberg C (2000) Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P NMR study. Chem Geol 163:101–114

    Article  CAS  Google Scholar 

  • Chambers LG, Reddy KR, Osborne TZ (2011) Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Sci Soc Am J 75:2000–2007

    Article  CAS  Google Scholar 

  • Chambers LG, Osborne TZ, Reddy KR (2013) Effect of salinity pulsing events on soil organic carbon loss across an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115:363–383

    Article  CAS  Google Scholar 

  • Chambers LG, Davis SE, Troxler T, Boyer JN, Downey-Wall A, Scinto LJ (2014) Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia 726:195–211

    Article  CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cy 17(4):1–11. https://doi.org/10.1029/2002GB001917

    Article  CAS  Google Scholar 

  • Christie J, Kusler J (2009) Recommendations for a national wetlands and climate change initiative. https://www.aswm.org/pdf_lib/recommendations_2008_112008.pdf. Accessed 21 Jan 2018

  • Clark LL, Ingall ED, Benner R (1998) Marine phosphorus is selectively remineralized. Nature 393:426

    Article  CAS  Google Scholar 

  • Condron LM, Goh KM, Newman RH (1985) Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P-NMR analysis. J Soil Sci 36(2):199–207

    Article  CAS  Google Scholar 

  • Condron LM, Frossard E, Tiessen H, Newman RH, Stewart JWB (1990) Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions. J Soil Sci 41(1):41–50

    Article  CAS  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of world’s ecosystem services and natural capital. Nature 397:253–260

    Article  Google Scholar 

  • Cox DT, Vosatka ED, Moody HL, Conner LL (1982) D-J F-25 St. Johns River fisheries resources completion report. Florida Game and Fresh Water Fish Commission, Tallahassee, FL

    Google Scholar 

  • Craft CB, Richardson CJ (1993a) Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol Appl 3:446–458

    Article  CAS  PubMed  Google Scholar 

  • Craft CB, Richardson CJ (1993b) Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades. Biogeochemistry 22:133–156

    Article  CAS  Google Scholar 

  • Craft CB, Richardson CJ (1998) Recent and long-term organic soil accretion and nutrient accumulation in the Everglades. Soil Sci Soc Am J 62:834–843

    Article  CAS  Google Scholar 

  • Craft CB, Clough J, Ehman J, Joye S, Park R, Pennings S, Gou H, Machmuller M (2008) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78

    Article  Google Scholar 

  • Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • DeLaune RD, White JR (2012) Will coastal wetlands continue to sequester carbon in response to an increase in global seal level?: a case study of the rapidly subsiding Mississippi River deltaic plain. Climatic Change 110:297–314

    Article  Google Scholar 

  • Downs RJ (1962) Photocontrol of growth and dormancy in woody plants. In: Kozlowski TZ (ed) Tree growth. Ronald, New York, pp 133–148

    Google Scholar 

  • Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71

    Article  CAS  PubMed  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17(1):71–84. https://doi.org/10.1007/s11273-008-9119-1

    Article  Google Scholar 

  • Euliss NH Jr, Mushet DM, Newton WE, Otto CRV, Nelson RD, LaBaugh JW, Scherff EJ, Rosenberry DO (2014) Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations. J Hydrol 513:490–503

    Article  Google Scholar 

  • Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D’Alpaos A, van de Koppel J, Rybczyk JM, Reyes E, Craft CB, Clough J (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climate factors. Rev Geophys 50:28

    Article  Google Scholar 

  • Fall C (1982) Water quality monitoring annual report, 1979-1981. Technical report no. 17, St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Fauth JE, Quintana-Ascencio PF, Hinkle CR, Wang D, Woodberry O, Chee YE (2016) Transpiration by Carolina willow (Salix caroliniana): environmental effects and cost-efficient management. Final report. St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Finlayson CM, D’Cruz R, Davidson N, Alder J, Steve C, de Groot R, Taylor D (2005) Millennium ecosystem assessment, 2005. Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC. https://doi.org/10.1007/BF02987493, accessed 21 Jan 2018

    Article  PubMed  Google Scholar 

  • Florida Department of Environmental Protection (2016) Final integrated water quality assessment for Florida: 2016 Sections 303(d), 305(b) and 314 report and listing. Florida Department of Environmental Protection. https://floridadep.gov/sites/default/files/2016-Integrated-Report.pdf. Accessed 12 Dec 2017

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Fox S, Bochnak A, Osborne T, Keenan L, Speaks S, Dobberfuhl D (2014) Modeling wetland subsidence and elevation change in a headwater system: interpolation, model validation and implications for downstream water quality. Paper presented at AWRA GIS and water resources VIII: data to decisions, Snowbird, UT, 12–14 May 2014. http://www.awra.org/meetings/SnowBird2014/doc/final-program.pdf

  • Gaiser EE, Zafiris A, Ruiz PL, Tobias FAC, Ross MS (2006) Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal South Florida. Hydrobiologia 569:237–257

    Article  Google Scholar 

  • Geselbracht L, Freeman K, Kelly E, Gordon DR, Putz FE (2011) Retrospective and prospective model simulations of sea level rise impacts on Gulf of Mexico coastal marshes and forests in Waccasassa Bay, Florida. Clim Change 107:35–57

    Article  Google Scholar 

  • Gleason RA, Laubhan MK, Euliss NH Jr (eds) (2008) Ecosystem services derived from wetland conservation practices in the United States prairie pothole region with an emphasis on the U.S. Department of Agriculture Conservation Reserve and Wetlands Reserve Programs. Professional Paper 1745, U.S. Geological Survey, Reston, VA

    Google Scholar 

  • Gressel N, McColl JG, Preston CM, Newman RH, Powers RF (1996) Linkages between phosphorus transformations and carbon decomposition in a forest soil. Biogeochemistry 33:97–123

    Article  Google Scholar 

  • Guggenberger G, Christensen BT, Rubæk GH, Zech W (1996) Land use and fertilization effects on P forms in two European soils: resin extraction and [31]P-NMR analysis. Eur J Soil Sci 47:605–614

    Article  CAS  Google Scholar 

  • Hall GB (1987) Establishment of minimum surface water requirements for the greater Lake Washington Basin. Technical Publication SJ87–3. St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Hall DL, Ponzio KJ, Miller JB, Bowen PJ, Curtis DL (2017) Ecology and management of Carolina willow (Salix caroliniana): a compendium of knowledge. Technical Publication SJ2017-01. St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Harland WB, Pickton CAG, Wright NJR, Croxton CA, Smith DG, Cutbill JL, Henderson WG (1976) Some coal-bearing strata in Svalbard. Norsk Polarinstitutt Skrifter 164:1–89

    Google Scholar 

  • Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci USA 105(46):17842–17847

    Article  CAS  PubMed  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz S, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn AM, Terry AC, Troumbis AY, Woodward FY, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  CAS  Google Scholar 

  • Heer O (1868–1883) Flora Fossilis Arctica, volumes 1–7. Druck and Verlag von Friedrich Schulthess and Verlag von J. Wurster and Comp, Winterthur and Zürich

    Google Scholar 

  • Herman AB (2013) Albian-Paleocene flora of the North Pacific: systematic composition, palaeofloristics and phytostratigraphy. Stratigr Geol Correl 21:689–747

    Article  Google Scholar 

  • Huber M, Caballero R (2011) The early Eocene equable climate problem revisited. Clim Past 7:603–633

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2014) Climate change 2014: synthesis report summary for policymakers, 7–16. https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf. Accessed 21 Jan 2018

  • Johnston CA, Caretti ON (2017) Mangrove expansion into temperate marshes alters habitat quality for recruiting Callinectes spp. Mar Ecol Prog Ser 573:1–14

    Article  Google Scholar 

  • Junk WJ, An S, Finlayson CM, Gopal B, KvÄ›t J, Mitchell SA, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75(1):151–167. https://doi.org/10.1007/s00027-012-0278-z

    Article  CAS  Google Scholar 

  • Karr JR, Chu EW (1999) Restoring life in running waters: better biological monitoring. Island Press, Washington, DC

    Google Scholar 

  • Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Keddy PA, Fraser LH (2003) The management of wetlands for biological diversity: four principles. In: Ambasht RS, Ambasht NK (eds) Modern trends in applied aquatic ecology. Springer, Boston, MA, pp 21–42

    Chapter  Google Scholar 

  • Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504(7478):53–60

    Article  CAS  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:5

    Article  Google Scholar 

  • Kononova SV, Nesmeyanova MA (2002) Phosphonates and their degradation by microorganisms. Biochemistry (Moscow) 67:184–195

    Article  CAS  Google Scholar 

  • Kornis MS, Breitburg D, Balouskus R, Bilkovic DM, Davias LA, Giordano S, Heggie K, Hines AH, Jacobs JM, Jordan TE, King RS, Patrick CJ, Seitz RD, Soulen H, Targett TE, Weller DE, Whigham DF, Uphoff J (2017) Linking the abundance of estuarine fish and crustaceans in nearshore waters to shoreline hardening and land cover. Estuar Coast 40(5):1464–1486

    Article  CAS  Google Scholar 

  • Koukol O, Novak F, Hrabal R (2008) Composition of the organic phosphorus fraction in basidiocarps of saprotrophic and mycorrhizal fungi. Soil Biol Biochem 40:2464–2467

    Article  CAS  Google Scholar 

  • Kryshtofovich AN (1928) New data on the upper Tertiary flora of north-western Siberia. Proc Geol Comm 46:751–757

    Google Scholar 

  • Kusler J (2006) Common questions: wetland, climate change, and carbon sequestering. http://www.aswm.org/propub/wetlandsandclimate.pdf. Accessed 21 Jan 2018

  • Larsen DP, Thornton KW, Urquhart NS, Paulsen SG (1994) The role of sample surveys for monitoring the condition of the Nation’s lakes. Environ Monit Assess 32:101–134

    Article  CAS  PubMed  Google Scholar 

  • Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. Ann NY Acad Sci 1162:79–98. https://doi.org/10.1111/j.1749-6632.2009.04147.x

    Article  PubMed  Google Scholar 

  • LePage BA (2007) The taxonomy and biogeographic history of Glyptostrobus Endlicher (Cupressaceae). Spec Publ Peabody Mus Nat Hist Yale Univ 48:359–426

    Article  Google Scholar 

  • LePage BA (2009) Earliest occurrence of Taiwania (Cupressaceae) from the Early Cretaceous of Alaska: evolution, biogeography, and paleoecology. Proc Acad Nat Sci Phila 158:129–158

    Article  Google Scholar 

  • LePage BA, Yang H, Matsumoto M (2005) The evolution and biogeographic history of Metasequoia. In: LePage BA, Williams CJ, Yang H (eds) The geobiology and ecology of Metasequoia. Springer, Dordrecht, pp 3–114

    Chapter  Google Scholar 

  • Lovejoy TE, Hannah L (2006) Climate change and biodiversity. Yale University Press, New Haven and London

    Google Scholar 

  • Lopez RD, Fennessy MS (2002) Testing the floristic quality assessment index as an indicator of wetland condition. Ecol Appl 12:487–497

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tillman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  • Lowe EF (1983) Distribution and structure of floodplain plant communities in the Upper Basin of the St. Johns River, Florida. Technical Publication 83-8, St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Lowe EF, Brooks JE, Fall CJ, Gerry LR, Hall GB (1984) U.S. EPA Clean Lakes Program, Phase I. Diagnostic-feasibility study of the Upper St. Johns River chain of lakes. Vol. 1 – Diagnostic study. Tech. Pub. SJ 84-15. St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Lusby FE, Gibbs MM, Cooper AB, Thompson K (1998) The fate of groundwater ammonium in a lake edge wetland. J Environ Qual 27:459–466

    Article  CAS  Google Scholar 

  • MacDonald GM, Kremenetski KV, Beilman DW (2008) Climate change and the northern Russian treeline zone. Philos Trans R Soc B Biol Sci 363:2285–2299

    Article  CAS  Google Scholar 

  • Mahieu N, Olk DC, Randall EW (2000) Analysis of phosphorus in two humic acid fractions of intensively cropped lowland rice soil by 31P-NMR. Eur J Soil Sci 51:391–402

    Article  CAS  Google Scholar 

  • Maltby E, Acreman MC (2011) Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol Sci J 56(568):1341–1359. https://doi.org/10.1080/02626667.2011.631014

    Article  Google Scholar 

  • MÃ¥rd, J, Box JE, Brown R, Mack M, Mernild SH, Walker D, Walsh J, Bhatt US, Epstein HE, Myers-Smith IH, Raynolds MK, Schuur EAG (2017) Cross-cutting scientific issues. In: Snow, water, ice and permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. pp 231–256

    Google Scholar 

  • Martin AC, Jeffers ES, Petrokofsky G, Myers-Smith I, Macias-Fauria M (2017) Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environ Res Lett 12. https://doi.org/10.1088/1748-9326/aa7989

    Article  Google Scholar 

  • McDowell RW, Condron LM, Stewart I, Cave V (2005) Chemical nature and diversity of phosphorus in New Zealand pasture soils using 31P nuclear magnetic resonance spectroscopy and sequential fractionation. Nutr Cycl Agroecos 72:241–254

    Article  CAS  Google Scholar 

  • McGuire KL, Allison SD, Fierer N, Tresede KK (2013) Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons. PLoS One 8(7):e68278. https://doi.org/10.1371/journal.pone.0068278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIver EE, Basinger JF (1999) Early Tertiary floral evolution in the Canadian High Arctic. Ann Mo Bot Gard 86:523–545

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2003) Ecosystems and human well being: a framework for assessment. Island Press, Washington, DC

    Google Scholar 

  • Miller SJ, Borah AK, Lee MA, Lowe EF, Rao DV (1996) Technical memorandum no. 13—Environmental water management plan for the Blue Cypress Water Management Area: Upper St. Johns River Basin Project. St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Miller SJ, Lee MA, Lowe EF (1998) The Upper St. Johns River Basin Project: merging flood control with aquatic ecosystem restoration and preservation. In: Transactions of the 63rd North American wildlife and natural resources conference, vol 63, pp 156–170

    Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Mitsch WJ, Cronk JK, Wu X, Nairn RW, Hey DL (1995) Phosphorus retention in constructed freshwater riparian marshes. Ecol Appl 5:830–845

    Article  Google Scholar 

  • Moomaw WR, Chmura GL, Davies GT, Finlayson CM, Middleton BA, Natali SM, Perry JE, Roulet N, Sutton-Grier AE (2018) Wetlands in a changing climate: science, policy and management. Wetlands 38(2):183–205

    Article  Google Scholar 

  • Moseman-Valtierra S, Abdul-Aziz OI, Tang J, Ishtiaq KS, Morkeski K, Mora J, Kroeger KD (2016) Carbon dioxide fluxes reflect plant zonation and belowground biomass in a coastal marsh. Ecosphere 7(11):1–48. https://doi.org/10.1002/ecs2.1560

    Article  Google Scholar 

  • Nahlik AM, Fennessy MS (2016) Carbon storage in US wetlands. Nat Commun 7:13835. https://doi.org/10.1038/ncomms13835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan S, Beck MW, Wilson P, Thomas CJ, Guerrero A, Shepard CC, Trespalacios D (2016) Coastal wetlands and flood damage reduction: using risk industry-based models to assess natural defenses in the Northeastern USA. Lloyd’s Tercentenary Research Foundation, London. Sci Rep 7(1):1–23. https://conservationgateway.org/ConservationPractices/Marine/crr/library/Documents/CoastalWetlandsandFloodDamageReductionReport.pdf. Accessed 21 Jan 2018

    Google Scholar 

  • National Ice and Snow Data Center (2018) Advancing knowledge of Earth’s frozen regions. https://nsidc.org/cryosphere/glaciers/quickfacts.html. Accessed 30 July 2018

  • Natural Resources Defense Council (2010) Climate change, water, and risk: current water demands are not sustainable. https://www.nrdc.org/sites/default/files/WaterRisk.pdf. Accessed 29 Jan 2018

  • Neubauer SC (2014) On the challenges of modeling the net radiative forcing of wetlands: reconsidering Mitsch et al. 2013. Landsc Ecol 29(4):571–577. https://doi.org/10.1007/s10980-014-9986-1

    Article  Google Scholar 

  • Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18(6):1000–1013. https://doi.org/10.1007/s10021-015-9879-4

    Article  Google Scholar 

  • Newman RH, Tate KR (1980) Soil phosphorus characterization by 31P-nuclear magnetic resonance. Commun Soil Sci Plant Anal 11:835–842

    Article  CAS  Google Scholar 

  • Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Global Environ Chang 14(1):69–86. https://doi.org/10.1016/j.gloenvcha.2003.10.007

    Article  Google Scholar 

  • Northern Great Plains Floristic Quality Assessment Panel (2001) Coefficients of conservatism for the vascular flora of the Dakotas and adjacent grasslands. U.S. Geological Survey, Biological Resources Division, Information and Technology Report USGS/BRD/ITR-2001-0001

    Google Scholar 

  • Osborne TZ, Newman S, Kalla P, Scheidt DJ, Bruland GL, Cohen MJ, Scinto LJ, Ellis LR (2011) Landscape patterns of significant soil nutrients and contaminants in the Greater Everglades Ecosystem: past, present, and future. Crit Rev Environ Sci Technol 41(6):121–148

    Article  CAS  Google Scholar 

  • Osborne TZ, Bochnak AMK, Vandam B, Duffy S, Keenan L, Inglett KS, Inglett PW, Sihi D (2014) Hydrologic effects on soil stability—loss, formation, and nutrient fluxes. Final report. St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Osborne TZ, Fitz HC, Davis S (2017) Restoring the foundation of the Everglades: assessment of edaphic responses to hydrologic restoration scenarios. Restor Ecol 25(S1):59–71

    Article  Google Scholar 

  • Payette S (1993) The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Rev Pal Pal 79:7–30

    Article  Google Scholar 

  • Pedersen GK, Andersen LA, Lundsteen EB, Petersen HI, Bojesen-Koefoed JA, Nytoft HP (2006) Depositional environments, organic maturity and petroleum potential of the Cretaceous coal-bearing Atane Formation at Qullisat, Nuussuaq Basin, West Greenland. J Petrol Geol 29:3–26

    Article  CAS  Google Scholar 

  • Phelps SA, Bochnak AMK, Ponzio KJ (2015) Vegetation response and elevation change in a perturbed hydrologic regime: the subsidy-stress gradient in a peat-based floodplain marsh. Paper presented at the annual conference of the Society of Wetland Scientists, Providence, RI, USA, 3 June 2015

    Google Scholar 

  • Potthoff M, Steenwerth K, Jackson L, Drenovsky R, Scow K, Joergensen R (2005) Soil microbial community composition as affected by restoration practices in California grassland. Soil Biol Biochem 38:1851–1860

    Article  CAS  Google Scholar 

  • Qu L, Makoto K, Choi DS, Quoreshi AM, Koike T (2009) The role of ectomycorrhiza in boreal forest ecosystem. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems: Siberian larch forests, Ecological studies, vol 209. Springer, Dordrecht, pp 413–425

    Chapter  Google Scholar 

  • Raabe EA, Stumpf RP (2016) Expansion of tidal marsh in response to sea-level rise on the Gulf Coast of Florida, USA. Estuar Coast 39:145–157

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240

    Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Reddy KR, DeLaune RD, DeBusk WF, Koch MS (1993) Long-term nutrient accumulation rates in the Everglades. Soil Sci Soc Am J 57:1147–1155

    Article  CAS  Google Scholar 

  • Rheinhardt RD, Brinson MM, Farley PM (1997) Applying wetland reference data to functional assessment, mitigation, and restoration. Wetlands 17:195–215

    Article  Google Scholar 

  • Rheinhardt RD, Rheinhardt MC, Brinson MM, Faser KE Jr (1999) Application of reference data for assessing and restoring headwater ecosystems. Restor Ecol 7:241–251

    Article  Google Scholar 

  • Richardson CJ (1999) The role of wetlands in storage, release and cycling of phosphorus on the landscape: a 25 year retrospective. In: Reddy KR (ed) Phosphorus biogeochemistry in sub-tropical ecosystems. CRC/Lewis, Boca Raton, FL, pp 47–68

    Google Scholar 

  • Ricketts BD, Embry AF (1984) Summary of geology and resource potential of coal deposits in the Canadian Arctic Archipelago. Bull Can Petrol Geol 32:359–371

    Google Scholar 

  • Rosenberg H (1964) Distribution and fate of 2-aminoethylphosphonic acid in Tetrahymena. Nature 203:299–300

    Article  CAS  PubMed  Google Scholar 

  • Rubæk GH, Guggenberger G, Zech W, Christensen BT (1999) Organic phosphorous in soil size separates characterized by phosphorous-31 nuclear magnetic resonance and resin extraction. Soil Sci Soc Am J 63:1123–1132

    Article  Google Scholar 

  • Saha AK, Saha S, Sadle J, Jiang J, Ross MS, Price RM, Sternberg L, Wendelberger KS (2011) Sea level rise and South Florida coastal forests. Climatic Change 107:81–108

    Article  Google Scholar 

  • Sakai A (1971) Freezing resistance of relicts from the Arcto-Tertiary flora. New Phytol 70:1199–1205

    Article  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptation to freezing stress. Springer, New York

    Book  Google Scholar 

  • Schloemer-Jäger A (1958) Alttertiäre pflanzen aus flözen der brögger-halbinsel spitzbergens. Palaeontogr Abt B 104:39–103

    Google Scholar 

  • Schuyt K, Brander L (2004) Living waters: conserving the source of life: the economic values of the world’s wetlands. World Wildlife Fund, Gland. https://www.cbd.int/financial/doc/wwf-wetlandsvalues2004.pdf. Accessed 29 Jan 2018

    Google Scholar 

  • Simpson LT, Osborne TZ, Duckett LJ, Feller IC (2017) Carbon storages along a climate induced coastal wetland gradient. Wetlands 37(6):1023–1035. https://doi.org/10.1007/s13157-017-0937-x

    Article  Google Scholar 

  • Sloan LC (1998) Polar stratospheric clouds: a high-latitude warming mechanism in an ancient polat greenhouse world. Geophys Res Let 25:3517–3520

    Article  Google Scholar 

  • Sloan LC, Huber M, Ewing A (1999) Polar stratospheric cloud forcing in a greenhouse world. In: Abrantes F, Mix AC (eds) Reconstructing ocean history: a window into the future. Kluwer Academic/Plenum, New York, pp 272–293

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbioses, 3rd edn. Academic, London

    Google Scholar 

  • Solomon D, Lehman J (2000) Loss of phosphorous from soil in semi-arid northern Tanzania as a result of cropping: evidence from sequential extraction and 31P-NMR spectroscopy. Eur J Soil Sci 51:699–708

    Article  Google Scholar 

  • Solomon D, Lehmann J, Mamo T, Fritzsche F, Zech W (2002) Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. Geoderma 105:21–48

    Article  CAS  Google Scholar 

  • Sterling M, Padera C (1998) The Upper St. Johns River Basin Project: the environmental transformation of a public flood control project. Professional Paper SJ97-PP1, St. John River Water Management District, Palatka, FL

    Google Scholar 

  • Stevens DL Jr, Olsen AR (1999) Spatially restricted surveys over time for aquatic resources. J Agr Biol Environ Stat 4:415–428

    Article  Google Scholar 

  • Stevens DL Jr, Olsen AR (2000) Spatially restricted random sampling designs for design-based and model-based estimation. In: Accuracy 2000: Proceedings of the 4th international symposium on spatial accuracy assessment in natural resources and environmental sciences, Delft University Press, The Netherlands, pp 609–616

    Google Scholar 

  • Stewart RE, Kantrud HA (1971) Classification of natural ponds and lakes in the Glaciated Prairie Region. Resource Publication 92, U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Sumann M, Amelung W, Haumaier L, Zech W (1998) Climatic effects on soil organic phosphorus in the North American Great Plains identified by phosphorus-31 nuclear magnetic resonance. Soil Sci Soc Am J 62:1580–1586

    Article  CAS  Google Scholar 

  • Sundareshwar PV, Morris JT, Pellechia PJ, Cohen H, Porter DE, Jones BC (2001) Occurrence and ecological significance of pyrophosphate in estuaries. Limnol Oceanogr 46:1570–1577

    Article  CAS  Google Scholar 

  • Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus limitation of coastal ecosystem processes. Science 299:563–565

    Article  CAS  PubMed  Google Scholar 

  • Sundareshwar PV, Richardson CJ, Gleason RA, Pellechia PJ, Honomichl S (2009) Nature versus nurture: functional assessment of restoration effects on wetland services using nuclear magnetic resonance spectroscopy. Geophys Res Lett 36:L03402. https://doi.org/10.1029/2008GL036385

    Article  Google Scholar 

  • Sveshnikova IN, Budantsev LY (1969) Florulae fossiles arcticae, vol 1. Nauka, Leningrad

    Google Scholar 

  • Tate KR, Salcedo I (1988) Phosphorus control of soil organic matter accumulation and cycling. Biogeochemistry 5:99–107

    Article  CAS  Google Scholar 

  • Tiessen H, Stewart JWB, Moir JO (1983) Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60-90 years of cultivation. J Soil Sci 34:815–823

    Article  CAS  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Toor GS, Condron LM, Cade-Menun BJ, Di HJ, Cameron KC (2005) Preferential phosphorus leaching from an irrigated grassland soil. Eur J Soil Sci 56:155–167

    Article  CAS  Google Scholar 

  • Torio DD, Chmura GL (2013) Assessing coastal squeeze of tidal wetlands. J Coast Res 29(5):1049–1061. https://doi.org/10.2112/JCOASTRES-D-12-00162.1

    Article  Google Scholar 

  • Troxler TG, Childers DL, Madden CJ (2014) Drivers of decadal-scale change in southern Everglades wetland macrophyte communities of the coastal ecotone. Wetlands 34:81–90

    Article  Google Scholar 

  • Turner BL, Mahieu N, Condron LN (2003) The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy. Org Geochem 34:1199–1210

    Article  CAS  Google Scholar 

  • Turrión MB, Glaser B, Solomon D, Ni A, Zech W (2000) Effects of deforestation on phosphorus pools in mountain soils of the Allay range, Khyrgyzia. Biol Fertil Soils 31:134–142

    Article  Google Scholar 

  • United States Environmental Protection Agency (2010) Florida water quality assessment report: 303(d) listed waters for 2010. United States Environmental Protection Agency, Washington, DC. https://ofmpub.epa.gov/waters10/attains_waterbody.control?p_list_id=FL2893V&p_state=FL&p_cycle=2010#attainments, accessed 12 Dec 2017

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. https://doi.org/10.1111/nph.13288

    Article  CAS  PubMed  Google Scholar 

  • Williams CJ, Johnson AH, LePage BA, Vann DR, Sweda T (2003) Reconstruction of Tertiary Metasequoia forests II. Structure, biomass and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29:271–292

    Article  Google Scholar 

  • Williams CJ, LePage BA, Johnson AH, Vann DR (2009) Structure, biomass, and productivity of a late Paleocene Arctic forest. Proc Acad Nat Sci Phila 158:107–127

    Article  Google Scholar 

  • Williams CJ, Trostle KD, Sunderland D (2010) Fossil wood in coal-forming environments of the late Paleocene-early Eocene Chickaloon Formation. Palaeogeogr Palaeoclimatol Palaeoecol 295:363–375

    Article  Google Scholar 

  • Wingard GL, Lorenz JL (2014) Integrated conceptual model and habitat indices for the southwest Florida coastal wetlands. Ecol Indicat 44(S1):92–107

    Article  Google Scholar 

  • Woodward RT, Wui YS (2001) The economic value of wetland services: a meta-analysis. Ecol Econ 37(2):257–270. https://doi.org/10.1016/S0921-8009(00)00276-7

    Article  Google Scholar 

  • Zhu Q, Peng C, Liu J, Jiang H, Fang X, Chen H, He JS (2016) Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Sci Rep 6(1):38020. https://doi.org/10.1038/srep38020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberli J. Ponzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponzio, K.J. et al. (2019). Building Resiliency to Climate Change Through Wetland Management and Restoration. In: An, S., Verhoeven, J. (eds) Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-14861-4_10

Download citation

Publish with us

Policies and ethics