Skip to main content

Fungal-Derived Natural Product: Synthesis, Function, and Applications

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The kingdom Fungi represents an incredibly rich and untapped source of bioactive natural products and seems to be an ideal agent for providing unique chemical compounds against various diseases. They are present in almost every ecological niche, making them the second largest kingdom after bacteria. It has been reported that earth is approximately estimated to have 1.5 million species and only 10% of it is known to scientific community. Several fungal secondary metabolites are useful for mankind, for example, penicillin a β-lactam antibiotic was isolated first time from Penicillium sp. Now, it is one of the widely used antibiotics worldwide. Fungal kingdom produces a variety of secondary metabolites, including all important classes like terpenes, terpenoids, alkaloids, and sugar derivatives. Though many fungal-derived natural products are known today, the production potential of fungus is significantly low because the expression of gene and corresponding secondary metabolites are cryptic/very less under laboratory condition. Therefore, scientific community around the world is searching for a chemical method to synthesize the secondary metabolite in laboratory at higher yield. Moreover, total in vitro chemical synthesis does not always signify a cost-effective method for producing fungal-derived natural compound, particularly when synthesizing compounds with complex chemistry. However, this issue can be overcome by utilizing heterologous production of secondary metabolites. Current chapter describes in detail the variety of secondary metabolites produced, their synthesis strategies via chemical and heterologous mode, as well as their biological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham WR (2001) Bioactive sesquiterpenes produced by fungi are they useful for humans as well. Curr Med Chem 8(6):583–606

    Article  CAS  PubMed  Google Scholar 

  • Aiken AM, Allegranzi B, Scott JA, Mehtar S, Pittet D, Grundmann H (2014) Antibiotic resistance needs global solutions. Lancet Infect Dis 14:550–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves MJ, Ferreira IC, Dias J, Teixeira V, Martins A, Pintado M (2012) A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med 78:1707–1718

    Article  CAS  PubMed  Google Scholar 

  • Anke T, Oberwinkler F, Steglich W, Schramm G (1977) The strobilurins- new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J Antibiot 30:806–810

    Article  CAS  Google Scholar 

  • Archer DB (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11(5):478–483

    Article  CAS  PubMed  Google Scholar 

  • Arnone A, Cardillo R, Meille SV, Nasini G, Tolazzi M (1994) Secondary mould metabolites. Part 47. Isolation and structure elucidation of clavilactones A-C, new metabolites from the fungus Clitocybe clavipes. J Chem Soc Perkin Trans 1:2165–2168

    Article  Google Scholar 

  • Ashfeld BL, Martin SF (2005) Enantioselective syntheses of tremulenediol A and tremulenolide A. Org Lett 7:4535–4537

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Umezawa K, Iinuma H, Naganawa H, Nakamura H, Iitaka Y, Takeuchi T (1990) Production, isolation and structure determination of a novel β-glucosidase inhibitor, cyclophellitol, from Phellinus sp. J Antibiot 43:49–53

    Article  CAS  Google Scholar 

  • Bailey AM, Alberti F, Kilaru S, Collins CM, de Mattos-Shipley K, Hartley AJ, Hayes PM, Griffin A, Lazarus CM, Cox RJ, Willis CL, O’Dwyer K, Spence D, Foster GD (2016) Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci Rep 6:25202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbesgaard P, Heldt-Hansen HP, Diderichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662

    Article  CAS  PubMed  Google Scholar 

  • Bass D, Richards TA (2011) Three reasons to re-evaluate fungal diversity on Earth and in the ocean. Fungal Biol Rev 25:159–164

    Article  Google Scholar 

  • Beekman AM, Barrow RA (2014) Fungal metabolites as pharmaceuticals. Aust J Chem 67:827–843

    Article  CAS  Google Scholar 

  • Bell RPL, Wijnberg JBPA, de Groot A (2001) Base-induced rearrangement of Perhydronaphthalene-1,4 diol monosulfonate esters to 11-Oxatricyclo[5.3.1.02,6] undecanes. Total synthesis of Furanether B. J Org Chem 66:2350–2356

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438

    Article  PubMed  Google Scholar 

  • Bladt TT, Frisvad JC, Knudsen PB, Larsen TO (2013) Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 18(9):11338–11376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boh B, Berovic M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13:265–301

    Article  CAS  PubMed  Google Scholar 

  • Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109(9):3903–3990

    Article  CAS  PubMed  Google Scholar 

  • Cane DE, Kang I (2000) Aristolochene synthase: purification, molecular cloning, high-level expression in Escherichia coli, and characterization of the Aspergillus terreus cyclase. Arch Biochem Biophys 376(2):354–364

    Article  CAS  PubMed  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  • Cheung PCK (2010) The nutritional and health benefits of mushrooms-review. Nutr Bull 35:292–299

    Article  Google Scholar 

  • Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106(8):3412–3442

    Article  CAS  PubMed  Google Scholar 

  • Christianson DW (2008) Unearthing the roots of the terpenome. Curr Opin Chem Biol 12(2):141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362(5):402–415

    Article  CAS  PubMed  Google Scholar 

  • Correia JJ (1991) Effects of antimitotic agents on tubulin – nucleotide interactions. Pharmacol Ther 52:127–147

    Article  CAS  PubMed  Google Scholar 

  • Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In: Biosynthesis: aromatic polyketides, isoprenoids, alkaloids. Springer, Berlin, pp 53–95

    Chapter  Google Scholar 

  • de Boer AH, de Vries-van Leeuwen IJ (2012) Fusicoccanes: diterpenes with surprising biological functions. Trends Plant Sci 17(6):360–368

    Google Scholar 

  • Dufossé L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26C:56–61

    Article  CAS  Google Scholar 

  • Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66(9):2961–2968

    Article  CAS  PubMed  Google Scholar 

  • Elisashvili V (2012) Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int J Med Mushrooms 14(3):211–239

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31(5):617–627

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Minami A, Tsukagoshi T, Sato N, Sahara T, Ohgiya S, Gomi K, Oikawa H (2011) Total biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase α: heterologous expression of four biosynthetic genes in Aspergillus oryzae. Biosci Biotechnol Biochem 75:1813–1817

    Article  CAS  PubMed  Google Scholar 

  • Gauthier GM, Keller NP (2013) Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 61:146–157

    Article  CAS  PubMed  Google Scholar 

  • Godio RP, Martin JF (2009) Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: biosynthesis of the antitumor clavaric acid. Fungal Genet Biol 46(3):232–242

    Article  CAS  PubMed  Google Scholar 

  • Godio RP, Fouces R, Martin JF (2007) A squalene epoxidase is involved in biosynthesis of both the antitumor compound clavaric acid and sterols in the basidiomycete Hypholoma sublateritium. Chem Biol 14(12):1334–1346

    Article  CAS  PubMed  Google Scholar 

  • Hamad B (2010) The antibiotics market. Nat Rev Drug Discov 9:675–676

    Article  CAS  PubMed  Google Scholar 

  • Hansen FG, Bundgaard E, Madsen R (2005) A short synthesis of (+)-Cyclophellitol. J Org Chem 70:10139–10142

    Article  CAS  PubMed  Google Scholar 

  • Hartley AJ, de Mattos-Shipley K, Collins CM, Kilaru S, Foster GD, Bailey AM (2009) Investigating pleuromutilin-producing Clitopilus species and related basidiomycetes. FEMS Microbiol Lett 297:24–30

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Tori M, Mizuno Y, Asakawa Y (1987) Cryptoporic acid A and B, novel bitter drimane sesquiterpinoid ethers of isocitric acid, from the fungus Cryptoporus volvatus. Tetrahedron Lett 28:6303

    Article  CAS  Google Scholar 

  • Heneghan MN, Yakasai AA, Halo LM, Song Z, Bailey AM, Simpson TJ, Cox RJ, Lazarus CM (2010) First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. Chembiochem 11:1508–1512

    Article  CAS  PubMed  Google Scholar 

  • Henningsen M (2003) Modern fungicides: fighting fungi in agriculture. Chemie in unserer Zeit 37(2):98–111

    Article  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE et al (2007) Higher level phylogenetic classification of the fungi. Mycol Res 111(Pt 5):509–547

    Article  PubMed  Google Scholar 

  • Hidalgo PI, Ullan RV, Albillos SM, Montero O, Fernández-Bodega MÁ et al (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol 62:11–24

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Iwai Y, Masuma R, Tei K, Omura S (1979) Neoxaline, a new alkaloid produced by Aspergillus japonicus, production, isolation and properties. J Antibiot 32:781–785

    Article  CAS  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  PubMed  Google Scholar 

  • Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki S (1993) Antimitotic agents: chemistry and recognition of tubulin molecule. Med Res Rev 13:183–198

    Article  CAS  PubMed  Google Scholar 

  • Jiang JD, Zhiqiang AN (2000) Bioactive fungal natural products through classic a biocombinatorial approches. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier Science Publishers, Amsterdam, pp 245–272

    Google Scholar 

  • Jin FJ, Maruyama J, Juvvadi PR, Arioka M, Kitamoto K (2004) Adenine auxotrophic mutants of Aspergillus oryzae: development of a novel transformation system with triple auxotrophic hosts. Biosci Biotechnol Biochem 68:656–662

    Article  CAS  PubMed  Google Scholar 

  • Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, Ishiguro Y, Furukawa S (1994) Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 35:1569–1572

    Article  CAS  Google Scholar 

  • Kawagishi H, Akachi T, Ogawa T, Masuda K, Yamaguchi K, Yazawa K, Takahashi M (2006) Chaxine A, an osteoclast-forming suppressing substance, from the mushroom Agrocybe chaxingu. Heterocycles 69(1):253–258

    Article  CAS  Google Scholar 

  • Kawai K, Nozawa K, Nakajima S, Iitaka Y (1984) Studies on fungal products. VII. The structure of meleagrin and 9-O-p-bromobenzoylmeleagrin. Chem Pharm Bull 32:94–98

    Article  CAS  Google Scholar 

  • Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci U S A 95:505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Kushiro T, Shibuya M, Ebizuka Y, Abe I (2010) Protostadienol synthase from Aspergillus fumigatus: functional conversion into lanosterol synthase. Biochem Biophys Res Commun 391(1):899–902

    Article  CAS  PubMed  Google Scholar 

  • Kogl M, Brecker L, Warrass R, Mulzer J (2008) Novel protoilludane lead structure for veterinary antibiotics: Total synthesis of Pasteurestins A and B and assignment of their configurations. Eur J Org Chem 16:2714–2730

    Article  CAS  Google Scholar 

  • Konda Y, Onda M, Hirano A, Omura S (1980) Oxaline and neoxaline. Chem Pharm Bull 28:2987–2993

    Article  CAS  Google Scholar 

  • Kondoh M, Usui T, Mayumi T, Osada H (1998) Effects of tryprostatin derivatives on microtubule assembly in vitro and in situ. J Antibiot 51:801–804.39

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Thakur S, Sharma S, Yadav N, Rastegari AA, Yadav AN, Saxena AK (2019) Disruption of protease genes in microbes for production of heterologous proteins. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 35–75. https://doi.org/10.1016/B978-0-444-63503-7.00003-6

    Chapter  Google Scholar 

  • Kozlovsky AZ, Vinokrova NG, Reshetilova TA, Sakharovsky VG, Baskunov BP, Seleznyov SG (1994) New metabolites of Penicillium glandicola var. glandicola: glandicolin A and glandicolin B. Prikl Biokhim Mikrobiol 30:410–414

    CAS  Google Scholar 

  • Lesburg CA, Caruthers JM, Paschall CM, Christianson DW (1998) Managing and manipulating carbocations in biology: terpenoid cyclase structure and mechanism. Curr Opin Struct Biol 8(6):695–703

    Article  CAS  PubMed  Google Scholar 

  • Lindequist U, Niedermeyer THJ, Julich WD (2005) The pharmacological potential of mushrooms. eCAM 2(3):285–299

    PubMed  PubMed Central  Google Scholar 

  • Lodeiro S, Xiong Q, Wilson WK, Ivanova Y, Smith ML, May GS, Matsuda SP (2009) Protostadienol biosynthesis and metabolism in the pathogenic fungus Aspergillus fumigatus. Org Lett 11(6):1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Ma LJ, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416

    Article  CAS  PubMed  Google Scholar 

  • Magnusson G, Thoren S, Wickberg B (1972) Fungal extractives-IV: structure of a novel sesquiterpene dialdehyde from Lactarius by spectroscopic methods. Tetrahedron Lett 29(11):1621–1624

    Article  Google Scholar 

  • Mantle PG, Perera KP, Maishman NJ, Mundy GR (1983) Biosynthesis of penitrems and roquefortine by Penicillium crustosum. Appl Environ Microbiol 45:1486–1490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564

    Article  CAS  PubMed  Google Scholar 

  • Mei D, Shi-Ping C, Kazuko K, Yochinobu I, Wen-Zhi G, Salu SS, Takaki H, Masaki T, Naomi M, Atsushi K, Keiji M, Mitsuru H, Nobuo S (2009) Anti- proliferative and apoptosis-inducible activity of Sarcodonin G from Sarcodon scabrosus in HeLa cells. Int J Oncol 34:201–207

    Google Scholar 

  • Mihelcic J, Moeller KD (2004) Oxidative Cyclizations: the asymmetric synthesis of (−)-Alliacol A. J Am Chem Soc 126:9106–9111

    Article  CAS  PubMed  Google Scholar 

  • Mitsuguchi H, Seshime Y, Fujii I, Shibuya M, Ebizuka Y, Kushiro T (2009) Biosynthesis of steroidal antibiotic fusidanes: functional analysis of oxidosqualene cyclase and subsequent tailoring enzymes from Aspergillus fumigatus. J Am Chem Soc 131(18):6402–6411

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, Jacquot JP, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6(3):248–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel DW, Pachler KGR, Steyn PS, Wessels PL, Gafner G, Kruger GJ (1974) X-ray structure of oxaline: a novel alkaloid from Penicillium oxalicum. J Chem Soc Chem Commun 24:1021–1022

    Article  Google Scholar 

  • Nagel DW, Pachler KGR, Steyn PS, Vleggaar R, Wessels PL (1976) The chemistry and 13CNMR assignments of oxaline, a novel alkaloid from Penicillium oxalicum. Tetrahedron 32:2625–2631

    Article  CAS  Google Scholar 

  • Nozawa K, Nakajima S (1979) Isolation of radicicol from Penicillium luteo-aurantium, and meleagrin, a new metabolite, from Penicillium meleagrinum. J Nat Prod 42:374–377

    Article  CAS  Google Scholar 

  • Pahirulzaman KAK, Williams K, Lazarus CM (2012) A toolkit for heterologous expression of metabolic pathways in Aspergillus oryzae. Methods Enzymol 517:241–260

    Article  CAS  PubMed  Google Scholar 

  • Paquette LA, Geng F (2002) Total synthesis of (+)-isabelin. J Am Chem Soc 124:9199–9203

    Article  CAS  PubMed  Google Scholar 

  • Peters RJ (2010) Two rings in them all: the labdane related diterpenoids. Nat Prod Rep 27(11):1521–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20(5):200–206

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2018a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research. Springer, Cham. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2018b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30

    Google Scholar 

  • Rios JL, Andújar I, Recio MC, Giner RM (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75(11):2016–2044

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Kinoshita H, Shimizu T, Nihira T (2008) Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng 106:466–472

    Article  CAS  PubMed  Google Scholar 

  • Santos dos RG, Osório LF, Crippa SAJ, Riba J, Zuardi WA, Jaime ECH (2016) Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): a systematic review of clinical trials published in the last 25 years. Ther Adv Psychopharmacol 6(3):193–213

    Article  CAS  Google Scholar 

  • Scott PM, Merrien MA, Polonsky J (1976) Roquefortine and isofumigaclavine a, metabolites from Penicillium roqueforti. Experientia 32:140–142

    Article  CAS  Google Scholar 

  • Singh AK, Bishayee A, Pandey AK (2018) Targeting histone deacetylases with compound of natural and synthetic origin: an emerging anticancer strategies. Nutrients 10(6):731

    Article  CAS  PubMed Central  Google Scholar 

  • Smanski MJ, Peterson RM, Huang SX, Shen B (2012) Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Curr Opin Chem Biol 16(1–2):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith D, Burnham M, Edwards J, Earl A, Turner G (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum. Nat Biotechnol 8:39–41

    Article  CAS  Google Scholar 

  • Srikrishna A, Vasantha LB, Ravikumar PC (2006) The first total synthesis of (±)-lagopodin A. Tetrahedron Lett 47(8):1277–1281

    Article  CAS  Google Scholar 

  • Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, Burns C, Canbäck B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC et al (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107(26):11889–11894

    Article  PubMed  PubMed Central  Google Scholar 

  • Steyn PS (1970) The isolation, structure and absolute configuration of secalonic acid D, the toxic metabolite of Penicillium oxalicum. Tetrahedron 26:51–57

    Article  CAS  PubMed  Google Scholar 

  • Steyn PS, Vleggaar R (2004) Roquefortine, an intermediate in the biosynthesis of oxaline in cultures of Penicillium oxalicum. J Chem Soc Chem Commun 10:560–561

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Tagami K, Liu C, Minami A, Noike M, Isaka T, Fueki S, Shichijo Y, Toshima H, Gomi K, Dairi T, Oikawa H (2013) Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae. J Am Chem Soc 135:1260–1263

    Article  CAS  PubMed  Google Scholar 

  • Tfelt-Hansen P, Saxena PR, Dahlof C, Pascual J, Lainez M, Henry P, Diener H, Schoenen J, Ferrari MD, Goadsby PJ (2000) Ergotamine in the acute treatment of migraine: a review and European consensus. Brain 123:9–18

    Article  PubMed  Google Scholar 

  • Tori M, Hamada N, Sono M, Sono Y, Ishikawa M, Nakashima K, Hashimoto T, Asakawa Y (2000) Synthesis of cryptoporic acid A methyl ester. Tetrahedron Lett 41:3099–3102

    Article  CAS  Google Scholar 

  • Usui T, Kondoh M, Cui CB, Mayumi T, Osada H (1998) Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 333:543–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Den Berg M, Gidijala L, Kiela J, Bovenberg R, Vander KI (2010) Biosynthesis of active pharmaceuticals: beta-lactam biosynthesis in filamentous fungi. Biotechnol Genet Eng Rev 27:1–32

    Article  Google Scholar 

  • Vedula LS, Jiang J, Zakharian T, Cane DE, Christianson DW (2008) Structural and mechanistic analysis of trichodiene synthase using sitedirected mutagenesis: probing the catalytic function of tyrosine-295 and the asparagine-225/ serine-229/glutamate-233-Mg2+ B motif. Arch Biochem Biophys 469(2):184–194

    Article  CAS  PubMed  Google Scholar 

  • Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89(5):1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Weber G, Schörgendorfer K, Schneider-Scherzer E, Leitner E (1994) The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet 26:120–125

    Article  CAS  PubMed  Google Scholar 

  • Xu JW, Zhao W, Zhong JJ (2010) Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 87(2):457–466

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yalpani N, Altier DJ, Barbour E, Cigan AL, Scelonge CJ (2001) Production of 6-methylsalicylic acid by expression of a fungal polyketide synthase activates disease resistance in tobacco. Plant Cell 13:1401–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada O, Rho LB, Katsuya G (1997) Transformation system for Aspergillus oryzae with double auxotrophic mutations niaD and sC. Biosci Biotechnol Biochem 61:1367–1369

    Article  CAS  Google Scholar 

  • Zhao M, Goedecke T, Gunn J, Duan J, Che CT (2013) Protostane and fusidane triterpenes: a mini-review. Molecules 18(4):4054–4080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong JJ, Xiao JH (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol 113:79–150

    CAS  PubMed  Google Scholar 

  • Zjawiony JK (2004) Biologically active compounds from Aphyllophorales (polypore) fungi. J Nat Prod 67(2):300–310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.K.S. acknowledges the CSIR New Delhi for providing financial support in the form of Senior Research Fellowship. HKR acknowledges the UGC for providing financial support in the form of UGC-CRET fellowship. The authors are extremely grateful to Department of Science and Technology (DST-FIST), Government of India, New Delhi, for financial support to the Department of Biochemistry, University of Allahabad, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Rana, H.K., Pandey, A.K. (2019). Fungal-Derived Natural Product: Synthesis, Function, and Applications. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14846-1_8

Download citation

Publish with us

Policies and ethics