Skip to main content

Fungal Probiotics: Opportunity, Challenge, and Prospects

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The discovery of several fungal strains as probiotics is expanding a new era in the probiotic family. Because of their unique cellular architecture and better survivability in the harsh environment of the gastrointestinal tract, fungi are significant probiotic candidates. As the exact mechanism of action, efficacy, and dosage level are not fully understood, the implementation of new fungal strains in a therapeutic approach is not completely validated. Among the fungal strains isolated as probiotic candidates, Saccharomyces boulardii var. cerevisiae is the most promising commercialized probiotic yeast: it exerts several health beneficial effects in both normal and adverse physiological states of the host body. Researchers around the world have tried to evaluate the efficacy of newly isolated probiotic fungi for better bioavailability as well as safety issues. This chapter mainly focuses on newly isolated probiotic fungal stains, their mechanism of action, their health benefits, and also their efficacy in the treatment of various diarrheal, skin, and vaginal complications. Some future prospects regarding safety issues and better industrial application are also covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agheyisi R (2014) The probiotics market: ingredients, supplements, foods. Report code: FOD035C. BCC Research, Wellesley

    Google Scholar 

  • Amorim JC, Piccoli RH, Duarte WF (2018) Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Res Int 107:518–527

    Article  CAS  Google Scholar 

  • Badia R, Zanello G, Chevaleyre C, Lizardo R, Meurens F, Martínez P, Salmon H (2012) Effect of Saccharomyces cerevisiae var. boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88). J Vet Res 43(1):4

    Article  CAS  Google Scholar 

  • Besirbellioglu BA, Ulcay A, Can M, Erdem H, Tanyuksel M, Avci IY, Araz E, Pahsa A (2006) Saccharomyces boulardii and infection due to Giardia lamblia. Scand J Infect Dis 38:479–481

    Article  Google Scholar 

  • Bisson JF, Hidalgo S, Rozan P, Messaoudi M (2010) Preventive effects of different probiotic formulations on travelers’ diarrhea model in wistar rats. Dig Dis Sci 55(4):911–919

    Article  Google Scholar 

  • Bontempo V, Di Giancamillo A, Savoini G, Dell’Orto V, Domeneghini C (2006) Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Anim Feed Sci Technol 129:224–236

    Article  Google Scholar 

  • Butler AR, White JH, Stark MJ (1991) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. Microbiology 137(7):1749–1757

    CAS  Google Scholar 

  • Buts JP, De Keyser N (2006) Effects of Saccharomyces boulardii on intestinal mucosa. Dig Dis Sci 51(8):1485–1492

    Article  Google Scholar 

  • Buts JP, Bernasconi P, Vaerman JP, Dive C (1990) Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig Dis Sci 35(2):251–256

    Article  CAS  Google Scholar 

  • Buts JP, de Keyser N, Marandi S (1999) Saccharomyces boulardii upgrades cellular adaptation after proximal enterectomy in rats. Gut 45:89–96

    Article  CAS  Google Scholar 

  • Chen X, Kokkotou EG, Mustafa N, Bhaskar KR, Sougioultzis S, O’Brien M, Pothoulakis C, Kelly C (2006) Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo, and protects against Clostridium difficile toxin A-induced enteritis. J Biol Chem 281(34):24449–22454

    Article  CAS  Google Scholar 

  • Chen X, Fruehauf J, Goldsmith JD, Xu H, Katchar KK, Koon HW, Zhao D, Kokkotou EG, Pothoulakis C, Kelly CP (2009) Saccharomyces boulardii inhibits EGF receptor signaling and intestinal tumor growth in Apcmin mice. Gastroenterol 137(3):914–923

    Article  CAS  Google Scholar 

  • Chen X, Yang G, Song JH, Xu H, Li D, Goldsmith J, Zeng H, Parsons-Wingerter PA, Reinecker HC, Kelly CP (2013) Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS One 8(5):64227

    Article  Google Scholar 

  • Cho YJ, Kim DH, Jeong D, Seo KH, Jeong HS, Lee HG, Kim H (2018) Characterization of yeasts isolated from kefir as a probiotic and its synergic interaction with the wine byproduct grape seed flour/extract. LWT 90:535–539

    Article  CAS  Google Scholar 

  • Cremonini F, Di Caro S, Covino M, Armuzzi A, Gabrielli M, Santarelli Nista EC, Cammarota G, Gasbarrini G, Gasbarrini A (2002) Effect of different probiotic preparations on anti-Helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study. Am J Gastroenterol 97:2744–2749

    Article  Google Scholar 

  • Czerucka D, Piche T, Rampal P (2007) Yeast as probiotics–Saccharomyces boulardii. Aliment Pharmacol Ther 26(6):767–778

    Article  CAS  Google Scholar 

  • Dahan S, Dalmasso G, Imbert V, Peyron JF, Rampal P, Czerucka D (2003) Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect Immun 71(2):766–773

    Article  CAS  Google Scholar 

  • Dube HC (2013) An introduction to fungi. Scientific Publishers.

    Google Scholar 

  • El-Baz AF, El-Enshasy HA, Shetaia YM, Mahrous H, Othman NZ, Yousef AE (2018) Semi-industrial scale production of a new yeast with probiotic traits, Cryptococcus sp. YMHS, isolated from the Red Sea. Probiotics Antimicrob Proteins 10(1):77–88

    Article  CAS  Google Scholar 

  • FAO/WHO, (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation, FAO Food and Nutrition Paper no. 85, FAO/WHO, Rome, Italy

    Google Scholar 

  • Fadda ME, Mossa V, Deplano M, Pisano MB, Cosentino S (2017) In vitro screening of Kluyveromyces strains isolated from Fiore Sardo cheese for potential use as probiotics. LWT-Food Sci Technol 75:100–106

    Article  CAS  Google Scholar 

  • Falagas ME, Betsi GI, Athanasiou S (2006) Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J Antimicrob Chemother 58(2):266–272

    Article  CAS  Google Scholar 

  • Fernández M, Hudson JA, Korpela R, de los Reyes-Gavilán CG (2015) Impact on human health of microorganisms present in fermented dairy products: an overview. Bio Med Res Int 2015:412714. https://doi.org/10.1155/2015/412714

    Article  CAS  Google Scholar 

  • Foligné B, Dewulf J, Vandekerckove P, Pignède G, Pot B (2010) Probiotic yeasts: anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice. World J Gastroenterol 16(17):2134–2145

    Article  Google Scholar 

  • Fuller R (1992) History and development of probiotics. In: Probiotics. Springer, Dordrecht, pp 1–8

    Chapter  Google Scholar 

  • Ghoneum M, Matsuura M, Braga M, Gollapudi S (2008) S. cerevisiae induces apoptosis in human metastatic breast cancer cells by altering intracellular Ca2+ and the ratio of Bax and Bcl-2. Int J Oncol 33(3):533–539

    CAS  PubMed  Google Scholar 

  • Girard P, Pansart Y, Gillardin JM (2005) Inducible nitric oxide synthase involvement in the mechanism of action of Saccharomyces boulardii in castor oil-induced diarrhoea in rats. Nitric Oxide 13(3):163–169

    Article  CAS  Google Scholar 

  • Gotteland M, Poliak L, Cruchet S, Brunser O (2005) Effect of regular ingestion of Saccharomyces boulardii plus inulin or Lactobacillus acidophilus LB in children colonized by Helicobacter pylori. Acta Paediatr 94:1747–1751

    Article  Google Scholar 

  • Guslandi M, Mezzi G, Sorghi M, Testoni PA (2000) Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 45:1462–1464

    Article  CAS  Google Scholar 

  • Guslandi M, Giollo P, Testoni PA (2003) A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol 15:697–698

    Article  Google Scholar 

  • Hjortmo SB, Hellström AM, Andlid TA (2008) Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Res 8(5):781–787

    Article  CAS  Google Scholar 

  • Holzapfel WH (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol 75(3):197–212

    Article  CAS  Google Scholar 

  • Hurduc V, Plesca D, Dragomir D, Sajin M, Vandenplas Y (2009) A randomized, open trial evaluating the effect of Saccharomyces boulardii on the eradication rate of Helicobacter pylori infection in children. Acta Paediatr 98:127–131

    Article  CAS  Google Scholar 

  • Jadán-Piedra C, Baquedano M, Puig S, Vélez D, Devesa V (2017) Use of Saccharomyces cerevisiae to reduce the bioaccessibility of mercury from food. J Agric Food Chem 65(13):2876–2882

    Article  Google Scholar 

  • Katz JA (2006) Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea. J Clin Gastroenterol 40:249–255

    Article  Google Scholar 

  • Kelesidis T, Pothoulakis C (2012) Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol 2:111–125

    Article  Google Scholar 

  • Kogani G, Pajtinka M, Babincova M, Miadokova E, Rauko P, Slamenova D, Korolenko TA (2008) Yeast cell wall polysaccharides as antioxidants and antimutagens: can they fight cancer? Minireview. Neoplasma 55(5):387

    Google Scholar 

  • Kollaritsch H, Holst H, Grobara P, Wiedermann G (1993) Prevention of traveler’s diarrhea with Saccharomyces boulardii. Results of a placebo controlled double-blind study. Fortschr Med 111(9):152–156

    CAS  PubMed  Google Scholar 

  • Kotowska M, Albrecht P, Szajewska H (2005) Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: a randomized double-blind placebo-controlled trial. Aliment Pharmacol Ther 21:583–590

    Article  CAS  Google Scholar 

  • Križková L, Ďuračková Z, Šandula J, Sasinková V, Krajčovič J (2001) Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro. Mutat Res Genet Toxicol Environ Mutagen 497(1):213–222

    Article  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  CAS  Google Scholar 

  • Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromolec 98:595–609

    Article  CAS  Google Scholar 

  • Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K (2004) Screening of dairy yeast strains for probiotic applications. J Dairy Sci 87(12):4050–4056

    Article  CAS  Google Scholar 

  • Lee SK, Kim HJ, Chi SG, Jang JY, Nam KD, Kim NH, Joo KR, Dong SH, Kim BH, Chang YW, Lee JI (2005) Saccharomyces boulardii activates expression of peroxisome proliferator-activated receptor-gamma in HT-29 cells. Korean J Gastroenterol 45(5):328–334

    PubMed  Google Scholar 

  • Lessard M, Dupuis M, Gagnon N, Nadeau E, Matte JJ, Goulet J, Fairbrother JM (2009) Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J An Sci 87(3): 922–934

    Google Scholar 

  • Lim MH, Lee OH, Chin JE, Ko HM, Kim IC, Lee HB, Bai S (2008) Simultaneous degradation of phytic acid and starch by an industrial strain of Saccharomyces cerevisiae producing phytase and α-amylase. Biotechnol Lett 30(12):2125–2130

    Article  CAS  Google Scholar 

  • Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. Int J Bacteriol 180(15):3735–3740

    CAS  Google Scholar 

  • Maccaferri S, Klinder A, Brigidi P, Cavina P, Costabile A (2012) Potential probiotic Kluyveromyces marxianus B0399 modulates the immune response in Caco-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system. Appl Environ Microbiol 78(4):956–964

    Article  CAS  Google Scholar 

  • Mansour-Ghanaei F, Dehbashi N, Yazdanparast K, Shafaghi A (2003) Efficacy of Saccharomyces boulardii with antibiotics in acute amoebiasis. World J Gastroenterol 9:1832–1833

    Article  Google Scholar 

  • Martín R, Olivares M, Marín ML, Fernández L, Xaus J, Rodríguez JM (2005) Probiotic potential of 3 lactobacilli strains isolated from breast milk. J Hum Lact 21(1):8–17

    Article  Google Scholar 

  • Martins FS, Nardi RM, Arantes RM, Rosa CA, Neves MJ, Nicoli JR (2005) Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. J Gen Appl Microbiol 51(2):83–92

    Article  CAS  Google Scholar 

  • Maupas JL, Champemont P, Delforge M (1983) Treatment of irritable bowel syndrome. Double blind trial of Saccharomyces boulardii. Med Chir Dig 12(12):77–79

    Google Scholar 

  • McFarland LV (2007) Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med Infect Dis 5:97–105

    Article  Google Scholar 

  • McFarland LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 16(18):2202–2022

    Article  Google Scholar 

  • Mumy KL, Chen X, Kelly CP, McCormick BA (2008) Saccharomyces boulardii interferes with Shigella pathogenesis by post invasion signaling events. Am J Physiol Gastrointest Liver Physiol 294(3):599–609

    Article  Google Scholar 

  • Nurmi JT, Puolakkainen PA, Rautonen NE (2005) Bifidobacterium lactis sp. 420 up-regulates cyclooxygenase (Cox)-1 and down-regulates Cox-2 gene expression in a Caco-2 cell culture model. Nutr Cancer 51(1):83–92

    Article  CAS  Google Scholar 

  • Ochangco HS, Gamero A, Smith IM, Christensen JE, Jespersen L, Arneborg N (2016) In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World J Microbiol Biotechnol 32(9):141

    Article  Google Scholar 

  • Olstorpe M, Schnürer J, Passoth V (2009) Screening of yeast strains for phytase activity. FEMS Yeast Res 9(3):478–488

    Article  CAS  Google Scholar 

  • Ooi CY, Dilley AV, Day AS (2009) Saccharomyces boulardii in a child with recurrent Clostridium difficile. Pediatr Int 51(1):156–158

    Article  Google Scholar 

  • Ozkan TB, Sahin E, Erdemir G, Budak F (2007) Effect of Saccharomyces boulardii in children with acute gastroenteritis and its relationship to the immune response. J Int Med Res 35(2):201–212

    Article  CAS  Google Scholar 

  • Padayachee M, Visser J, Viljoen E, Musekiwa A, Blaauw R (2018) Efficacy and safety of Saccharomyces boulardii in the treatment of acute gastroenteritis in the paediatric population: a systematic review. South Afr J Clin Nutr 4(1):1–12

    Google Scholar 

  • Péteri Z, Téren J, Vágvölgyi C, Varga J (2007) Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. Food Microbiol 24(3):205–210

    Article  Google Scholar 

  • Plein K, Hotz J (1993) Therapeutic effects of Saccharomyces boulardii on mild residual symptoms in a stable phase of Crohns disease with special respect to chronic diarrhea – a pilot-study. Z Gastroenterol 31:129–134

    CAS  PubMed  Google Scholar 

  • Puppala KR, Kumar VR, Khire J, Dharne M (2018) Dephytinizing and probiotic potentials of Saccharomyces cerevisiae (NCIM 3662) strain for amelioration of nutritional quality of functional foods. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-018-9394-y

  • Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, LaMont JT, Kelly CP (2001) Saccharomyces boulardii stimulates intestinal immunoglobulin a immune response to Clostridium difficile toxin a in mice. Infect Immun 69(4):2762–2765

    Article  CAS  Google Scholar 

  • Ragon M, Aumelas A, Chemardin P, Galvez S, Moulin G, Boze H (2008) Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castellii CBS 2923. Appl Microbiol Biotechnol 78(1):47–53

    Article  CAS  Google Scholar 

  • Rima H, Steve L, Ismail F (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421

    Google Scholar 

  • Rodrigues ACP, Cara DC, Fretez SHGG, Cunha FQ, Vieira EC, Nicoli JR, Vieira LQ (2000) Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. J Appl Microbiol 89(3):404–414

    Article  CAS  Google Scholar 

  • Sabater-Vilar M, Malekinejad H, Selman MHJ, Van der Doelen MAM, Fink-Gremmels J (2007) In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia 163(2):81–90

    Article  CAS  Google Scholar 

  • Saber A, Alipour B, Faghfoori Z, Khosroushahi AY (2017) Secretion metabolites of dairy Kluyveromyces marxianus AS41 isolated as probiotic, induces apoptosis in different human cancer cell lines and exhibit anti-pathogenic effects. J Funct Foods 34:408–421

    Article  CAS  Google Scholar 

  • Sanders JW, Tribble DR (2001) Diarrhea in the returned traveler. Curr Gastroenterol Rep 3:304–314

    Article  CAS  Google Scholar 

  • Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterol 126(6):1620–1633

    Article  Google Scholar 

  • Sharma D, Saharan BS (2018) Microbial cell factories. CRC Press, Boca Raton

    Book  Google Scholar 

  • Silva JFMD, Peluzio JM, Prado G, Madeira JEGC, Silva MO, de Morais PB, Nicoli JR (2015) Use of probiotics to control aflatoxin production in peanut grains. Sci World J 2015:959138., 8 pages. https://doi.org/10.1155/2015/959138

    Article  CAS  Google Scholar 

  • Silva-Aciares FR, Carvajal PO, Mejias CA, Riquelme CE (2011) Use of macroalgae supplemented with probiotics in the Haliotis rufescens (Swainson, 1822) culture in Northern Chile. Aquac Res 42(7):953–961

    Google Scholar 

  • Smith IM, Christensen JE, Arneborg N, Jespersen L (2014) Yeast modulation of human dendritic cell cytokine secretion: an in vitro study. PLoS One 9(5):e96595

    Article  Google Scholar 

  • Smith IM, Baker A, Christensen JE, Boekhout T, Frøkiær H, Arneborg N, Jespersen L (2016) Kluyveromyces marxianus and Saccharomyces boulardii induce distinct levels of dendritic cell cytokine secretion and significantly different T cell responses in vitro. PLoS One 11(11):e0167410

    Article  Google Scholar 

  • Srinivas B, Rani GS, Kumar BK, Chandrasekhar B, Krishna KV, Devi TA, Bhima B (2017) Evaluating the probiotic and therapeutic potentials of Saccharomyces cerevisiae strain (OBS2) isolated from fermented nectar of toddy palm. AMB Express 7(1):2

    Article  Google Scholar 

  • Surawicz CM, McFarland LV, Greenberg RN, Rubin M, Fekety R, Mulligan ME, Garcia RJ, Brandmarker S, Bowen K, Borjal D, Elmer GW (2000) The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis 31:1012–1017

    Article  CAS  Google Scholar 

  • Swidsinski A, Loening-Baucke V, Verstraelen H, Osowska S, Doerffel Y (2008) Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 135(2):568–579

    Article  Google Scholar 

  • Tiago FCP, Porto BAA, Ribeiro NS, Moreira LMC, Arantes RME, Vieira AT, Teixeira MM, Generoso SV, Nascimento VN, Martins FS, Nicoli JR (2015) Effect of Saccharomyces cerevisiae strain UFMG A-905 in experimental model of inflammatory bowel disease. Benef Microbes 6(6):807–815

    Article  CAS  Google Scholar 

  • Vilela EG, Ferrari MDD, Torres HOD, Pinto AG, Aguirre ACC, Martins FP, Goulart EMA, Da Cunha AS (2008) Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand J Gastroenterol 43:842–848

    Article  CAS  Google Scholar 

  • Weber G, Adamczyk A, Freytag S (1989) Treatment of acne with a yeast preparation. Fortschr Med 26:563–566

    Google Scholar 

  • Weiler F, Schmitt MJ (2003) Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res 3(1):69–76

    CAS  PubMed  Google Scholar 

  • Witthuhn RC, Schoeman T, Britz TJ (2005) Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation. Int Dairy J 15(4):383–389

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar S, Kumar V, Kumar K, Dhaliwal HS (2017b) Probiotic microbes: biodiversity, mechanisms of action and potential role in human health. In: Proceedings of National Conference on Advances in Food Science and Technology, pp 33–34

    Google Scholar 

Download references

Acknowledgments

The first author is grateful to the Department of Physiology, Midnapore College (Autonomous), West Bengal, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banik, A., Halder, S.K., Ghosh, C., Mondal, K.C. (2019). Fungal Probiotics: Opportunity, Challenge, and Prospects. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14846-1_3

Download citation

Publish with us

Policies and ethics