Skip to main content

Recent Advancement and the Way Forward for Cordyceps

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Cordyceps are entomopathogenic fungi, which include about 400 species, have cosmopolitan distribution, and are dominant and abundantly found in humid temperate and tropical forests. Cordyceps attacks mainly the insect larvae, with few reports on pupa and adults; the fungus invades and gradually replaces the host tissue by its mycelium. Cordyceps host range is very wide but predominant on two orders Coleoptera and Lepidoptera. Cordyceps species have diverse pharmaceutical properties and are commonly used to promote longevity and relieve fatigue along with immunomodulating, anti-oxidant, anti-tumor, anti-cancer, anti-metastatic, anti-inflammatory, anti-oxidative, antibiotic, hepatoprotective, nephroprotective, hypoglycemic, and hypocholesterolemic effects in humans. Cordyceps might also improve immunity by stimulating cells and specific chemicals in the immune system. The important active ingredients deciphered are polysaccharides, sterols, cordycepin, cordycepic acid, nucleosides, etc. More than 20 pharmacologically bioactive compounds have been isolated and extracted in various solvents and used for various treatments. The natural availability is very limited but the artificial culture is relatively high. However, the availability of the seeding material and their development protocol is restricted to few labs/companies. All the identified species are not fully exploited for the commercial cultivation due to lack of easy availability of seeding material and sophisticated environment requirement. The more vigorous screening of all the available germplasm is still the need of hour for more promising and new pharmacological active ingredients. In India, the sericulture waste can be used as an important potential culture material for developing the Cordyceps-related industry and support the silk farmers for additional income and social upliftment of the tribal community in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari MK (1981) Chyau: Ayurvediya vishleshan ek vivechana (mushrooms: an ayurvedic concepts). J Nep Pharm Asso 9:17–21

    Google Scholar 

  • Ahn YJ, Park SJ, Lee SG, Shin SC, Choi DH (2000) Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. J Agric Food Chem 48:2744–2748

    Article  CAS  PubMed  Google Scholar 

  • Artjariyasripong S, Mitchell JI, Hywel-Jones NL, Jones EBG (2001) Relationship of the genus Cordyceps and related genera, based on parsimony and spectral analysis of partial 18S and 28S ribosomal gene sequences. Mycoscience 42(6):503–517

    Article  CAS  Google Scholar 

  • Au D, Wang L, Yang D, Mok DK, Chan AS, Xu H (2012) Application of microscopy in authentication of valuable Chinese medicine I—Cordyceps sinensis, its counterfeits, and related products. Microsc Res Tech 75:54–64

    Article  PubMed  Google Scholar 

  • Baral B, Maharjan J (2012) In-vitro culture of Ophiocordyceps sinensis (Yarsagumba) and their associated endophytic fungi of Nepal Himalaya. Sci World 10(10):38–42

    Article  Google Scholar 

  • Bary A (1867) Zur Kenntniss insectentoedtender pilze. Botanische Zeitung 25:2–28

    Google Scholar 

  • Basith M, Madelin MF (1968) Studies on the production of perithecial stromata by Cordyceps militaris in artificial culture. Can J Bot 46:473–480

    Article  Google Scholar 

  • Berkeley MJ (1855) Nat. Ord. CII. Fungi. In: Hooker JD (ed) The botany of the Antarctic Voyage. II. Florae NNovae-Zealandiae. Lovell Reeve, London, pp 172–210

    Google Scholar 

  • Berkeley MJ (1857) On some entomogenous Sphaeriae. J Proc Linnean Soc Botany 1(4):157–159

    Article  Google Scholar 

  • Bocak L, Barton C, Crampton-Platt A, Chesters D, Ahrens D, Vogler AP (2014) Building the Coleoptera tree of life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst Entomol 39(1):97–110

    Article  Google Scholar 

  • Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GH (1999) Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51:891–898

    Article  CAS  PubMed  Google Scholar 

  • Burges HD (1981) Strategy for the microbial control of pests in 1980 and beyond: in Microbial control of pests and plant diseases, H. D. Burges, Academic Press London 797–836

    Google Scholar 

  • Ban S, Sakane T, Nakagiri A (2015) Three new species of Ophiocordyceps and overview of anamorph types in the genus and the familyOphiocordyceptaceae, Mycological Progress 14(1):article 1017

    Google Scholar 

  • Chai JP, Xie DY, Tian XJ et al (2010) Study on defense reactions of silkworm, Bombyx mori to Cordyceps militaris. Southwest China J Agric Sci 23:1308–1313

    Google Scholar 

  • Chen QW (1997) Study on Cordyceps (Fr.) fungi in Shennongjia forest district. Hubei Agric Sci 6:49–52

    Google Scholar 

  • Chen RY, Ichida M (2002) Infection of the silkworm, Bombyx mori, with Cordyceps militaris. J Insect Biotechnol Sericol 71:61–63

    Google Scholar 

  • Chen SZ, Wu PJ (1990) A brief introduction to bottle culture technique of Cordyceps militaris. Edible Fungi 04:31

    Google Scholar 

  • Chen YJ, Shiao MS, Lee SS, Wang SY (1997) Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937cells. Life Sci 60:2349–2359

    Google Scholar 

  • Chen YQ, Piao RZ, Jin YS et al (2002) Study on the artificial good quality and high output cultivation technique of Cordyceps militaris. Edible Fungi China 21(5):20–22

    Google Scholar 

  • Chen J, Zhang W, Lu T, Li J, ZhengY KL (2006) Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sci 78:2742–2748

    Article  CAS  PubMed  Google Scholar 

  • Chen SD, Lin SY, Lai YS, Cheng YH (2008) Effect of Cordyceps sinensis adlay fermentative products on antioxidant activities and macrophage functions. Taiwan J Agric Chem Food Sci 46:223–233

    CAS  Google Scholar 

  • Chen W, Zhang W, Shen W, Wang K (2010a) Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro. Cell Immunol 262:69–74

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen YC, Lin YT, Huang SH, Wang SM (2010b) Cordycepin induces apoptosis of CGTH W-2 thyroid carcinoma cells through the calcium-calpain-caspase 7-PARP pathway. J Agric Food Chem 58:11645–11652

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Cao YQ, Yang DR, Li MH (2011a) A new species of Ophiocordyceps (Clavicipitales, Ascomycota) from southwestern China. Mycotaxon 115:1–4

    Article  Google Scholar 

  • Chen YS, Liu BL, Chang YN (2011b) Effects of light and heavy metals on Cordyceps militaris fruit body growth in rice grain-based cultivation. Korean J Chem Eng 28:875–879

    Article  CAS  Google Scholar 

  • Chen ZH, Dai YD, Yu H et al (2013) Systematic analyses of Ophiocordyceps lanpingensis sp. nov., a new species of Ophiocordyceps in China. Microbiol Res 168(8):525–532

    Article  PubMed  Google Scholar 

  • Cheung JK, Cheung AW, ZhuY ZKY, Bi CW et al (2009) Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines. J Ethnopharmacol 124:61–68

    Article  CAS  PubMed  Google Scholar 

  • Chiang HM, Hou YC, Tsai SY, Yang SY, PDL C, Hsiu SL, Wen KC (2005) Marked decrease of cyclosporin absorption caused by coadministration of Cordyceps sinensis in rats. J Food Drug Anal 13:239–243

    Google Scholar 

  • Choi IY, Choi JS, Lee WH et al (1999) The condition of production of artificial fruiting body of Cordyceps militaris. Korean J Mycol 27:243–248

    Google Scholar 

  • Cooke MC (1892) Vegetable wasps and plant worms. Society for Promoting Christian Knowledge, London

    Google Scholar 

  • Chiu Ching-Peng, Tsong-Long Hwang, You Chan, Mohamed El-Shazly, Tung-Ying Wu, I-Wen Lo, Yu-Ming Hsu, Kuei-Hung Lai, Ming-Feng Hou, Shyng-Shiou Yuan, Fang-Rong Chang, Yang-Chang Wu, (2016) Research and development of Cordyceps in Taiwan. Food Science and Human Wellness 5 (4):177-185

    Google Scholar 

  • Cheng Y W, Chen Y I, Tzeng CY, Chen HC, Tsai CC, Lee Y C, Lin JG, Lai YK, Chang SL (2012) Extracts of Cordyceps militaris lower blood glucose via the stimulation of cholinergic activation and insulin secretion in normal rats. Phytother. Res. 26, 1173-1177

    Google Scholar 

  • Das SK, Masuda M, Sakurai A (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81:961–968

    Article  PubMed  Google Scholar 

  • De Bary (1867) Zur Kenntniss insect entoedtenderpilze. Botanis- che Zeitung 25(2):28

    Google Scholar 

  • Deng-Bo Ji, Jia Ye, Chang-Ling Li, Yu-Hua Wang, Jiong Zhao, Shao-Qing Cai, (2009) Antiaging effect of extract. Phytotherapy Research 23 (1):116-122

    Google Scholar 

  • Dilani D. De Silva, Sylvie Rapior, Kevin D. Hyde, Ali H. Bahkali, (2012) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Diversity 56 (1):1-29

    Google Scholar 

  • Ellis JB, Everhart BM (1892) The North American Pyrenomycetes. Ellis and Everhart, New field

    Google Scholar 

  • Evans HC (1982) Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecol Entomol 7(1):47–60

    Article  Google Scholar 

  • Evans HC, Elliot SI, Hughes DP (2011) Ophiocordyceps unilateralis. A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests? Commun Integr Biol 4:598–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson O (1982) Cordyceps bifusispora spec. nov. Mycotaxon 15:185–188

    Google Scholar 

  • Feng HL, Guo WC, Zhang RC (1990) Histological studies on Cordyceps militaris (L.: Fr.) link. Acta Mycol Sin 9:1–5

    Google Scholar 

  • Gao SY, Wang FZ (2008) Research of commercialized cultivation technology on Cordyceps militaris. North Hortic 9:212–215

    Google Scholar 

  • Glare TR (1992) Hirsutella stylophora Mains, a pathogen of Costelytra zealandica (Coleoptera: Scarabaeidae) in New Zealand. N Z Entomol 15(1):29–32

    Article  Google Scholar 

  • Glare TR, Callaghan MO, Wigley PJ (1993) Check list of naturally occurring entomopathogenic microbes and nematodes in New Zealand. N Z J Zoo 20(2):95–120

    Article  Google Scholar 

  • Gong CL, Wu YL, Zhu JH et al (1993) Artificial culture and composition analysis of silkworm Cordyceps militaris. Edible Fungi China 12(4):21–23

    Google Scholar 

  • Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JAF (2010) Functional foods and nondairy probiotic food development: trends, concepts and products. Compr Rev Food Sci Food Saf 9:292–302

    Article  CAS  PubMed  Google Scholar 

  • Gray GR (1858) Notices of insects that are known to form the bases of fungoid parasites. Harvard University, London

    Google Scholar 

  • Gu HS, Liang MY (1987) Study on the manual cultivation of Cordyceps militaris. Pharm Inf Bull 5:51–52

    Google Scholar 

  • Gu HS, Liang MY, Yuan GH et al (1988) Preliminary study on artificial cultivation of Cordyceps militaris using the pupae of Bombyx mori and Antheraea pernyi. Sci Seric 14:108–110

    Google Scholar 

  • Guo P, Kai Q, Gao J, Lian Z, Wu C, Wu C, Zhu H (2010) Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J Pharmacol Sci 113(4):395–403

    Article  CAS  PubMed  Google Scholar 

  • Garbyal S S, Aggarwal K K and Babu C R (2004) Impact of Cordyceps sinensis in the rural economy of interior villages of Dharchula sub-division of Kumaon Himalayas and its implications in the society. Indian Journal of Traditional Knowledge 3(2):182-186

    Google Scholar 

  • Harada Y, Akiyama N, Yamamoto K et al (1995) Production of Cordyceps militaris fruit body on artificially inoculated pupae of Mamestra brassicae in the laboratory. Trans Mycol Soc Jpn 36:67–72

    Google Scholar 

  • Hardeep S, Sardul T, Sandhu S, Sharma AK (2014) Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. Biotech 4:1–12

    Google Scholar 

  • Hitchcock SW (1961) Pupal mortality of the orange-striped oakworm. J Eco Entomol 54(5):962–964

    Article  Google Scholar 

  • Hobbs C (1995) Medicinal mushrooms: an exploration of tradition, healing and culture, vol 251. Botanica Press, Santa Cruz

    Google Scholar 

  • Hodge KT, Krasnoff SB, Humber RA (1996) Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88:715–719

    Article  Google Scholar 

  • Hodge KT, Humber RA, Wozniak CA (1998) Cordyceps variabilis and the genus Syngliocladium. Mycologia 90:743–753

    Article  Google Scholar 

  • Holder DJ, Keyhani NO (2005) Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71:5260–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday J, Cleaver M (2008) Medicinal value of the caterpillar fungi species of the genus cordyceps (Fr) link (Ascomycetes) a review. Int J Med Mushrooms 10(3):219–234

    Article  CAS  Google Scholar 

  • Holliday J, Cleaver P, Loomis-Powers M, Patel D (2004) Analysis of quality and techniques for hybridization of medicinal fungus Cordyceps sinensis. Int J Med Mushr 6:147–160

    Article  Google Scholar 

  • Holliday J, Cleaver M, Wasser SP (2005) Cordyceps. In: Coates PM, Blackman MR, Cragg G, Levine M, Moss J, White J (eds) Encyclopedia of dietary supplements. Marcel Dekker, New York, pp 1–13

    Google Scholar 

  • Hong IP, Kang PD, Kim KY et al (2010) Fruit body formation on silkworm by Cordyceps militaris. Mycobiology 38:128–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang ZJ, Ji H, Li P, Xie L, Zhao XC (2002) Hypoglycemic effect and mechanism of polysaccharides from cultured mycelium of Cordyceps sinensis. J China Pharm Univ 33:51–54

    CAS  Google Scholar 

  • Huang LF, Liang YZ, Guo FQ, Zhou ZF, Cheng BM (2003) Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militaris by LC/ESIMS. J Pharm Biomed Anal 33:1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Humber RA (2000) Fungal pathogens and parasites of insects. In: Priest F, Goodfellow M (eds) Applied microbial systematics. Kluwer Academic Publishers, Dordrecht, pp 203–230

    Chapter  Google Scholar 

  • Hennings PC (1902) Einige neue Cordiceps-arten aus Surinam, Hedwigia 41:167–169

    Google Scholar 

  • Hywel-Jones N L (1995) Cordyceps brunneapunctata sp. nov. infecting beetle larvae inThailand, Mycological Research 99(10):1195–1198

    Google Scholar 

  • Isaka M, Jaturapat A, Ruksereee K, Danwisetkanjana K, Tanticharoen M, Thebtar AY (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018

    Article  CAS  PubMed  Google Scholar 

  • Jia JM, Tao HH, Feng BM (2009) Cordyceamides A and B from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chem Pharm Bull (Tokyo) 57:99–101

    Article  CAS  Google Scholar 

  • Jiang P (1987) Pharmacology constituent and function of Cordyceps sinensis. J West North Med 2:43–44

    Google Scholar 

  • Jiang BL, Xun YG (1996) Studies on culture of Cordyceps militaris on Philosamia cynthia. Nat Plant Resour China 24(2):12–13

    Google Scholar 

  • Jin LY, Du ST, Ma L et al (2009) Optimization on mathematical model of basic medium of Cordyceps militaris cultivation. J Northwest A F Univ (Nat Sci Ed) 37(11):175–179

    Google Scholar 

  • Jong-Ho Koh, Jin-Man Kim, Un-Jae Chang, Hyung-Joo Suh, Hypocholesterolemic Effect of Hot-Water Extract from Mycelia of Cordyceps sinensis. Biological & Pharmaceutical Bulletin 26 (1):84-87

    Google Scholar 

  • Jian Yong Wu, Qiao Xia Zhang, Po Hong Leung, (2007) Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine 14 (1):43-49

    Google Scholar 

  • Kaczka EA, Trenner NR, Arison B, Walker RW, Folkers K (1964) Identification of cordycepin, a metabolite of Cordyceps militaris, as 3-deoxyadenosine. Biochem Biophys Res Commun 14:456–457

    Article  CAS  PubMed  Google Scholar 

  • Kan WC, Wang HY, Chien CC, Li SL, Chen YC , Chang LH, Cheng CH, Tsai WC, Hwang JC, Su SB, Huang LH, Chuu JJ (2012) Effects of extract from solid-state fermented Cordyceps sinensis on type 2 diabetes mellitus. Evid Based Complement Altern Med 2012:743107. https://doi.org/10.1155/2012/743107

  • Kaszak BD (2014) Cordyceps fungi as natural killers, new hopes for medicine and biological control factors. Ann Parasitol 60(3):151–158

    Google Scholar 

  • Kautman V, Kautmanova I (2009) Cordyceps s.l (ascomycetes, clavicipitaceae) in Slovakia. Catathelasma 11:5–48

    Google Scholar 

  • Kautmanova I (2002) Cordyceps entomorrhiza and Cordyceps tuberculata (Ascomycetes, Clavicipitales) new for Slovakia. Acta Rerumnaturalium Musei Nationalis Slovaci Bratislava 48:40–43

    Google Scholar 

  • Kawamura S (1955) Icones of Japanese fungi, vol 8. Kazama Shobó, Tokyo

    Google Scholar 

  • Keissler K, Lohwag H (1937) Part II fungi. In: Handel-Mazzetti H (ed) Symbolae sinicae. Springer, Wien, pp 1–73

    Google Scholar 

  • Kepler RM, Sung GH, Harada Y et al (2012) Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea (Clavicipitaceae). Am J Bot 99(3):552–561

    Article  CAS  PubMed  Google Scholar 

  • Kepler RM, Humber RA, Bischoff JF, Rehner SA (2014) Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 106(4):811–829

    Article  PubMed  Google Scholar 

  • Kiho T, Hui J, Yamane A, Ukai S (1993) Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol Pharm Bull 16:1291–1293

    Article  CAS  PubMed  Google Scholar 

  • Kiho T, Yamane A, Hui J, Usui S, Ukai S (1996) Polysaccharides in fungi XXXVI.1 hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull 19:294–296

    Article  CAS  PubMed  Google Scholar 

  • Kim SD (2010) Isolation, structure and cholesterol esterase inhibitory activity of a polysaccharide, PS-A, from Cordyceps sinensis. J Appl Biol Chem 53:784–789

    CAS  Google Scholar 

  • Klingen SH, Salinas RM (2002) Checklist of naturally occurring pathogens of insects and mites in Norway. Norwegian J Entomol 49(1):23–28

    Google Scholar 

  • Kobayasi Y (1937) On the specific connection of Cordyceps entomorrhiza and Tilachlidiopsis nigra. Shokubutsugaku Zasshi 51(603):97–102

    Article  Google Scholar 

  • Kobayasi Y (1941) The genus Cordyceps and its allies. Sci Rep Tokyo Bunrika Daigaku B 5(84):53–260

    Google Scholar 

  • Kobayasi Y (1977) Miscellaneous notes on the genus Cordyceps and its allies (2). J Jpn Bot 52(3):65–71

    Google Scholar 

  • Kobayasi Y (1980) Miscellaneous notes on the genus Cordyceps and its allies. J Jpn Bot 55:181–188

    Google Scholar 

  • Kobayasi Y (1982) Keys to the taxa of the genera Cordyceps and Torrubiella. Trans Mycol Soc Jpn 23:329–364

    Google Scholar 

  • Kobayasi Y, Shimizu D (1960) Monographic studies of Cordyceps 1. Group parasitic on Elaphomyces. Bull Nat Sci Museum Tokyo 5:69–85

    Google Scholar 

  • Kobayasi Y, Shimizu D (1976a) Cordyceps species from Japan 2. Bull Nat Sci Museum Tokyo B Bot 6(3):77–96

    Google Scholar 

  • Kobayasi Y, Shimizu D (1976b) The genus Cordyceps and its allies from New Guinea. Bull Nat Sci Museum Tokyo Series B Bot 2(4):133–152

    Google Scholar 

  • Kobayasi Y, Shimizu D (1980) Cordyceps species from Japan. Bull Nat Sci Museum Tokyo Series B Bot 6(4):125–145

    Google Scholar 

  • Kobayasi Y, Shimizu D (1982) Cordyceps species from Japan 5. Bull Nat Sci Museum Tokyo Series B Bot 8(4):111–123

    Google Scholar 

  • Kobayasi Y, Shimizu D (1983) Cordyceps species from Japan 4. Bull Nat Sci Museum Tokyo B Bot 8(3):79–91

    Google Scholar 

  • Koval EZ (1974) Opredelitel entomofilnych Gribov CCCP. Science Academy of Ukraine Kiev, Ukraine

    Google Scholar 

  • Kryukov VY, Yaroslavtseva ON, Lednev GR, Borisov BA (2011) Local epizootics caused by teleomorphic cordycipitoid fungi (Ascomycota: Hypocreales) in populations of forest lepidopterans and sawflies of the summer-autumn complex in Siberia. Microbiology 80(2):286–295

    Article  CAS  Google Scholar 

  • Kubo E, Sato A, Yoshikawa N, Kagota S, Shinozuka K, Nakamura K (2012) Effect of Cordyceps sinensis on TIMP-1secretion from mouse melanoma cell. Cent Eur J Biol 7:167–171

    CAS  Google Scholar 

  • Kuo YC, Tsai WJ, Wang JY, Chang SC, Lin CY, Shiao MS (2001) Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sci 68:1067–1082

    Google Scholar 

  • Kuo CF, Chen CC, Luo YH, Huang RY, Chuang WJ, Sheu CC, Lin YS (2005) Cordyceps sinensis mycelium protects mice from group Astreptococcal infection. J Med Microbiol 54:795–802

    Article  PubMed  Google Scholar 

  • Kuo CF, Chen CC, Lin CF, Jan MS, Huang RY, Luo YH, Chuang WJ, Sheu CC, Lin YS (2007a) Abrogation of streptococcal pyrogenic exotoxin B- mediated suppression of phagocytosis in U937cells by Cordyceps sinensis mycelium via production of cytokines. Food Chem Toxicol 45:278–285

    Article  CAS  PubMed  Google Scholar 

  • Kuo MC, Chang CY, Cheng TL, Wu MJ (2007b) Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: enhancement of cytokine synthesis, CD11b expression, and phagocytosis. Appl Microbiol Biotechnol 75:769–775

    Article  CAS  PubMed  Google Scholar 

  • Karpińska E. 2012. Biostymulujące właściwości entomopatogenicznych grzybów z rodzaju Cordyceps. Borgis - Postępy Fitoterapii 4: 254-264.

    Google Scholar 

  • Kram A A and Kram K J (2012) Entomopathogenic Fungi as an Important Natural Regulator of Insect Outbreaks in Forests (Review) in Forest Ecosystems—More than Just Trees, J. A. Blanco and Y.-H. Lo, Eds., chapter 12, InTech, Rijeka, Croatia, pp. 265–294

    Google Scholar 

  • Kevin J. Gaston, (1991) The Magnitude of Global Insect Species Richness. Conservation Biology 5 (3):283-296

    Google Scholar 

  • Kai Yue, Meng Ye, Zuji Zhou, Wen Sun, Xiao Lin, (2013) The genus: a chemical and pharmacological review. Journal of Pharmacy and Pharmacology 65 (4):474-493

    Google Scholar 

  • K. G. CUNNINGHAM, WILLIAM MANSON, F. S. SPRING, S. A. HUTCHINSON, (1950) Cordycepin, a Metabolic Product isolated from Cultures of Cordyceps militaris (Linn.) Link.. Nature 166 (4231):949-949

    Google Scholar 

  • Kobayasi Y, Shimizu D (1978) Cordyceps species from Japan, Bulletin of the National Science Museum, Tokyo B, Botany 4(2):43–63

    Google Scholar 

  • Kryukov V Y, Yaroslavtseva O N, Lednev G R, Borisov B A (2011) Local epizootics caused by teleomorphic cordycipitoid fungi (Ascomycota: Hypocreales) in populations of forest lepidopterans and sawflies of the summer-autumn complex in Siberia, Microbiology 80(2):286–295

    Google Scholar 

  • Lauritzen EM (1971) Cordyceps gracilis Montagne and Durieu new to Scandinavia. Blyttia 29(2):85–87

    Google Scholar 

  • Lee JS, Kwon JS, Won DP, Lee KE, Shin WC, Hong EK (2010) Study on macrophage activation and structural characteristics of purified polysaccharide from the liquid culture broth of Cordyceps militaris. Carbohydr Polym 82:982–988

    Article  CAS  Google Scholar 

  • Leu SF, Poon SL, Pao HY, Huang BM (2011) The in vivo and in vitro stimulatory effects of cordycepin on mouse Leydig cell steroidogenesis. Biosci Biotechnol Biochem 75:723–731

    Article  CAS  PubMed  Google Scholar 

  • Leung PH, Zhao S, Ho KP, Wu JY (2009) Chemical properties and antioxidant activity of exopolysaccharides from mycelia culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 114:1251–1256

    Article  CAS  Google Scholar 

  • Li X (2002) Man made cultivates of Cordyceps militaris (L) link. J Microbiol (China) 22(6):56–57

    Google Scholar 

  • Li CB, Tong XD, Bai J et al (2004) Artificial stromata production of Cordyceps militaris. J Dalian Natl Univ 6(5):29–31

    Google Scholar 

  • Li SP, Zhang GH, Zeng Q, Huang ZG, Wang YT, Dong TT et al (2006a) Hypoglycemic activity of polysaccharide with antioxidation isolated from cultured Cordyceps mycelia. Phytomedicine 13:428–433

    Article  CAS  PubMed  Google Scholar 

  • Li SP, Yang FQ, Tsim KW (2006b) Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal 41:1571–1584

    Article  CAS  PubMed  Google Scholar 

  • Li SZ, Xia FN, Yang XB (2006c) Comparative studies on the cultivation of 5 selected strains of Cordyceps militaris. Edible Fungi China 25(6):15–16

    Google Scholar 

  • Li CR, Huang B, Nam SH et al (2006d) Identification of a strain RCEF0718 with antineoplastic activity. J Laiyang Agric Coll (Nat Sci) 23:263–267

    Google Scholar 

  • Li HP, Hu Z, Yuan JL, Fan HD, Chen W, Wang SJ et al (2007) A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: purification and characterization. Phytother Res 21:1234–1241

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Chiang CS, Tsai ML, Hseu RS, Shu WY, Chuang CY, Sun YC, Chang YS, Lin JG, Chen CS, Huang CL, HsuI C (2009) Two-sided effect of Cordyceps sinensis on dendritic cells in different physiological stages. J Leukoc Biol 85:987–995

    Article  CAS  Google Scholar 

  • Li Y, Wang XL, Jiao L, Jiang Y, Li H, Jiang SP, Ngarong L, Fu SZ, Dong CH, Zhan Y, Yao YJ (2011) A survey of the geographic distribution of Ophiocordyceps sinensis. J Microbiol 49(6):913–919

    Article  PubMed  Google Scholar 

  • Li CY, Chiang CS, Cheng WC, Wang SC, Cheng HT, Chen CR, Shu WY, Tsai ML, Hseu RS, Chang CW, Huang CY, Fang SH, Hsu IC (2012) Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment. PLoS One 7:40824

    Article  CAS  Google Scholar 

  • Liang ZQ (1990) Anamorph of Cordyceps militaris and artificial culture of its fruit body. Southwest China J Agric Sci 3(2):1–6

    Google Scholar 

  • Liang MY, Gu HS (1987) Success in artificial cultivation of Cordyceps. J Shenyang Agric Univ 18:103–104

    Google Scholar 

  • Liang ZQ, Liu AY, Liu JL (1991) A new species of the genus Cordyceps and its Metarhizium anamorph. Acta Myco Sinica 10:257–262

    Google Scholar 

  • Liang ZQ, Liu AY, Jiang YC (2001) Two new species of Cordyceps from Jinggang Mountains. Mycosystema 20(3):306–309

    Google Scholar 

  • Lim JS, Kim SH, Choi JY, Park JS, Park SJ, Shin KS (2001) Cytokine-inducing and T cell mitogenic effects of Cordyceps hepialidicola. J Microbiol 39(3):181–185

    CAS  Google Scholar 

  • Lin QY, Song B, Li TH et al (2005) Studies on Cordyceps militaris (L.: Fr.) link infecting pupae of Tenebrio molitor L. Mycosystema 24:322–326

    Google Scholar 

  • Lin QY, Song B, Zhong YJ et al (2006) Optimization of some cultivation conditions of Cordyceps militaris. Edible Fungi China 25(6):17–19

    Google Scholar 

  • Lin CC, Pumsanguan W, Koo MMO, Huang HB, Lee MS (2007) Radiation protective effects of Cordyceps sinensis in blood cells. Tzu Chi Med J 19:226–232

    Article  CAS  Google Scholar 

  • Liu ZX (2004) Cultivation and the infectious ways to silkworm chrysalis with liquid spawn of Cordyceps militaris. J Huazhong Agric Univ 23:58–60

    Google Scholar 

  • Liu ZL, Liu Z (1997) Cordyceps spp. and some other entomopathogenic fungi from the Emei Mountain preserve in China. Mycosystema 16(2):139–143

    Google Scholar 

  • Liu B, Yuan P, Cao J (1984) A new species of Cordyceps from China. Acta Myco Sinica 3(4):192–195

    Google Scholar 

  • Liu B, Rong F, Jin H (1985) A new species of the genus Cordyceps. J Wuhan Bot Res 3(1):23–24

    Google Scholar 

  • Liu ZY, Liang ZQ, Whalley AJS, Yao YJ, Liu AY (2001) Cordyceps brittlebankisoides, a new pathogen of grubs and its a morph. Metarhizium anisopliae var majus J Invert Pathol 78(3):178–182

    Article  Google Scholar 

  • Lo HC, Hsu TH, Tu ST, Lin KC (2006) Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin. Am J Chin Med 34:819–832

    Article  Google Scholar 

  • Lo HC, Hsieh C, Lin FY, Hsu TH (2013) A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in dong chong xia cao and related bioactive ingredients. J Tradit Complement Med 3(1):16–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu MC, Shazly ME, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC (2013) Recent research and development of Antrodia cinnamomea. Pharmacol Ther 139:124–156

    Article  CAS  PubMed  Google Scholar 

  • Luerdara K, Kulsarin J, Buranapanichpan S, Tapingkae T (2015) Growth of Gold Cordyceps (Cordyceps militaris) on Pupae of Nanglai Thai Native Silkworm and Eri Silkworm. J Agri Chiang Mai University 32(1): 95 - 102

    Google Scholar 

  • Ma HT, Chen SZ (1991) Status and prospects on artificial cultivation of Cordyceps militaris. J Jinzhou Med Coll 12:63–65

    Google Scholar 

  • Mac Millan C (1898) Cordyceps stylophora Berk & Br, in Minnesota. Bull Torrey Bot Club 25:583

    Google Scholar 

  • Mains EB (1958) North American entomogenous species of Cordyceps. Mycologia 50(2):169–222

    Article  Google Scholar 

  • Massee G (1895) A revision of the genus Cordyceps. Ann Bot 9(33):1–44

    Article  Google Scholar 

  • Massee G (1899) Révision dugenre Cordyceps. Revue Mycologique 21:1–16

    Google Scholar 

  • Masuda M, Urabe E, Honda H, Sakurai A, Sakakibara M (2007) Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Technol 40:1199–1205

    Article  CAS  Google Scholar 

  • Mathieson J (1949) Cordyceps aphodii, a new species, on pasture cockchafer grubs. Trans Br Mycol Soc 32(2):113–135

    Article  Google Scholar 

  • Matsuda H, Akaki J, Nakamura S, Okazaki Y, Kojima H, Tamesada M et al (2009) Apoptosis-inducing effects of sterols from the dried powder of cultured mycelium of Cordyceps sinensis. Chem Pharm Bull 57:411–414

    Article  CAS  Google Scholar 

  • McLennan E, Cookson I (1926) Additions to Australian ascomycetes, no.2. Proc R Soc Victoria 38:69–76

    Google Scholar 

  • Miller D (1952) The insect people of the Maori. J Polynesian Soc 61(1–2):1–61

    Google Scholar 

  • Moingeon JM (2003) Réflexionssurlegenre Cordyceps. Bulletindela Société mycologiquede France 119(1–2):117–132

    Google Scholar 

  • Moller A (1901) Phycomycetenund Ascomyceten, Untersuchungenaus Brasilien, Botanische Mittheilungenausden Tropen 9, edited by A.F.W. Schimper, GustavFischer, Jena

    Google Scholar 

  • Moniz MF, Cabral MT, Tomaz IL, Basto MS (1999) On the appearance of amycosis in Phoracantha semipunctata (Fab.) larva. Silva Lusitana 7(1):49–54

    Google Scholar 

  • Moureau J (1949) Cordyceps du Congo Belge Mémoiresdel. Inst R Colonial Belge 7(5):1–58

    Google Scholar 

  • Mu X, Jia CF, Chen S et al (2010) Effects of light hours on growth and development of Cordyceps militaris. J Hebei Agric Sci 14(12):20–21

    Google Scholar 

  • Mueller GM, Bills GF, Foster MS (2011) Biodiversity of fungi: inventory and monitoring methods, 1st edn. Elsevier/Academic Press, Boston, MA

    Google Scholar 

  • Muller-Kogler E (1965) Cordyceps militaris (Fr.) Link: Beobachtungen und Versuche anlasslich eines Fundes auf Tipula paludosa Meig. (Dipt., Tipul.). Z Angew Entomol 55:409–418

    Google Scholar 

  • Maire R (1917) Champignons Nord-Africains nouveaux ou peu connus, Bulletin de la Soci´et´e d’Histoire Naturelle de l’Afrique du Nord 8(7):134–200

    Google Scholar 

  • Negi PS, Singh R, Koranga PR, Ahmed Z (2009) Biodiversity of Cordyceps in Himalayan hills of Uttarakhand, India. Abstr 5th Int Med Mushroom Conf Nantong Jiangsu, China

    Google Scholar 

  • Negi PS, Singh R, Koranga PS, Ahmed Z (2012) Two new for science species of genus Cordyceps Fr.(Ascomycetes) from Indian Himalaya. Inter J Med Mushs 14(5):501–506

    Article  Google Scholar 

  • Nieukerken EJ, Kaila L, Kitching IJ et al (2011) Order Lepidoptera Linnaeus, 1758, in Animal Biodiversity: an Outline of Higher-Level Classification and Survey of Taxonomic Richness (Ed.) ZQ Zhang. Zootaxa 3148:212–221

    Article  Google Scholar 

  • Ohta Y, Lee JB, Hayashi K, Fujita A, Park DK, Hayashi T (2007) In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem 55:10194–10199

    Article  CAS  PubMed  Google Scholar 

  • Olliff S (1895) Australian entomophytesor entomogenous fungi. Agric Gazett NSW 6:402–414

    Google Scholar 

  • Palfner G, Munõz VV, Escarate CG, Parra LE, Becerra J, Silva M (2012) Cordyceps cuncunae (Ascomycota, Hypocreales), a new pleoanamorphic species from temperate rainforest in southern Chile. Mycol Prog 11(3):733–739

    Article  Google Scholar 

  • Pan ZH, Gong CL, Zhu JZ (2002) Technology and application for industrial cultivation of Cordyceps militaris on pupae of Bombyx mori. Jiangsu Seric 24(3):21–24

    Google Scholar 

  • Panda AK, Swain KC (2011) Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. J Ayur Integr Med 2(1):9–13

    Article  Google Scholar 

  • Panigrahi A (1995) Fungus C. militaris infestation in the pupa of the tea pest Andraca bipunctata Walker. Environ Ecol 13:942–946

    Google Scholar 

  • Pao HY, Pan BS, Leu SF, Huang BM (2012) Cordycepin stimulated steroidogenesis in MA-10 mouse Leydig tumor cells through the protein kinase C pathway. J Agric Food Chem 60:4905–4913

    Article  CAS  PubMed  Google Scholar 

  • Park C, Hong SH, Lee JY, Kim GY, Choi BT, Lee YT et al (2005) Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol Rep 13:1211–1216

    PubMed  Google Scholar 

  • Pen X (1995) The cultivation of Cordyceps militaris fruit body on artificial media and the determination of SOD. Acta Edulis Fungi 2(3):25–28

    Google Scholar 

  • Petch T (1937) Notes on entomogenous fungi. Trans Br Mycol Soc 21:1–2

    Article  Google Scholar 

  • Petch T (1948) A revised list of British entomogenous fungi. Trans Br Mycol Soc 31:3–4

    Article  Google Scholar 

  • P. S. Negi, R. Singh, P. S. Koranga, and Z. Ahmed, “Two new for science species of genus Cordyceps Fr. (Ascomycetes) from Indian Himalaya,” International Journal of Medicinal Mushrooms, vol. 14, no. 5, pp. 501–506, 2012.

    Google Scholar 

  • Pacioni G, Rossi W (1980) Nuove segnalazioni di funghi entomogeni, Giornale Botanico Italiano 114(3-4):169– 174

    Google Scholar 

  • Quandt CA, Kepler RM, Gams W et al (2014) Phylogenetic based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5(1):121–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao YK, Fang SH, Tzeng YM (2007) Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol 114:78–85

    Article  CAS  PubMed  Google Scholar 

  • Ren SS (1998) Technical processes for artificial cultivation of Cordyceps militaris with high quality and quantity. Edible Fungi China 17(1):22–23

    Google Scholar 

  • Ren WY, Zhao H, Wu ZK (2009) Techniques for fast and high yielding cultivation of the valuable edible and medicinal mushroom Cordyceps militaris. China Agric Technol Ext 25(5):28–29

    Google Scholar 

  • Roth JJ, Clerc P (1997) Cordyceps michiganensis Mains (Ascomycetes, Clavicipitales), ouvelascomyce ‘tepourl’ Europe. Mycol Helv 9(1):29–37

    Google Scholar 

  • Russell R, Paterson M (2008) Cordyceps a traditional Chinese medicine and another fungal therapeutic biofactory. Phytochemistry 69:1469–1495

    Article  CAS  Google Scholar 

  • Sánchez-Peña SR (1990) Some insect and spider pathogenic fungi from Mexico with data on their host ranges. Fla Entomol 73:517–522

    Article  Google Scholar 

  • Sanjuan TI, Franco-Molano AE, Kepleretal RM (2015) Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps. Fungal Biol 119(10):901–916

    Article  PubMed  Google Scholar 

  • Sarovat S, Sudatis B, Meeslipa P, Grady BP, Magaraphen R (2003) The use of sericin as an nanoparticles for bioactive polyester. Carbohydr Polym 83(2):438–446

    Google Scholar 

  • Sato H, Shimazu M (2002) Homothallism in Cordyceps militaris. In: Book of abstracts, 7th international mycological congress, August 11-17, Oslo, Norway, p 311

    Google Scholar 

  • Sato H, Shimazu M, Kamata N (1994) Detection of Cordyceps militaris link (Clavicipitales: Clavicipitaceae) by burying pupae of Quadricalcarifera punctatella Motschulsky (Lepidoptera: Notodontidae). Appl Entomol Zoo 29(1):130–132

    Article  Google Scholar 

  • Shashidhar MG, Giridhar P, Sankar KU, Manohar (2013) Bioactive principles from Cordyceps sinensis: a potent food supplement – a review. J Func Foods 5(3):1013–1030

    Article  CAS  Google Scholar 

  • Shen NY, Zhou ZR, Zhang XC, San Z, Zeng L (1980) Preliminary research on Cordyceps sinensis. Chinese Trad Herbal Drug 11:273–275. (Chinese)

    Google Scholar 

  • Sheng L, Chen J, Li J, Zhang W (2011) An exopolysaccharide from cultivated Cordyceps sinensis and its effects on cytokine expressions of immunocytes. Appl Microbiol Biotechnol 163:669–678

    CAS  Google Scholar 

  • Shih IL, Tsai KL, Hsieh C (2007) Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem Eng J 33:193–201

    Article  CAS  Google Scholar 

  • Shimazu M, Mitsuhashi W, Hashimoto H (1988) Cordyceps brongniartii sp. nov., the teleomorph of Beauveria brongniartii. Trans Mycol Soc Jpn 29:323–330

    Google Scholar 

  • Shrestha B, Kim HK, Sung GH et al (2004) Bipolar heterothallism, a principal mating system of Cordyceps militaris in vitro. Biotechnol Bioprocess Eng 9:440–446

    Article  CAS  Google Scholar 

  • Shrestha B, Choi SK, Kim HK et al (2005a) Genetic analysis of pigmentation in Cordyceps militaris. Mycobiology 33:125–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha B, Han SK, Lee WH et al (2005b) Distribution and in vitro fruiting of Cordyceps militaris in Korea. Mycobiology 33:178–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha B, Zhang W, Zhang Y, Liu X (2012) The medicinal fungus Cordyceps militaris: research and development. Mycol Progress. https://doi.org/10.1007/s11557-012-0825-y

  • Shrestha B, Tanaka E, Hyun MW, Han JG, Kim CS, Jo JW, Han SK, Junsang O, Sung GH (2016) Coleopteran and Lepidopteran hosts of the Entomopathogenic genus Cordyceps sensu lato. J Mycol. https://doi.org/10.1155/2016/7648219

  • Song YD (2009) Inoculation experiment of Cordyceps militaris on Clanis bilineata. J Anhui Agric Sci 37:11010–11011

    Google Scholar 

  • Song D, He Z, Wang C, Yuan F, Dong P, Zhang W (2012) Regulation of the exopolysaccharide from an anamorph of Cordyceps sinensis on dendritic cell sarcoma (DCS) cell line. Eur J Nutr 52(2): 687-694

    Google Scholar 

  • Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16(8):1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Spegazzini CL (1919) Reliquiae mycologicae tropicaeet fungi costaricenses nonnulli. Boletindela Academia Nacionalde Cienciasen Córdoba 23:365–609

    Google Scholar 

  • Sprecher M, Sprinson DB (1963) A reinvestigation of the structure of ‘cordycepic acid’1a. J Org Chem 28:2490–2491

    Article  CAS  Google Scholar 

  • Stensrud Q, Hywel-Jones NL, Schumacher T (2005) Towards a phylogenetic classification of Cordyceps: ITS nrDNA sequence data confirm divergent lineages and paraphyly. Myco Res 109(1):41–56

    Article  CAS  Google Scholar 

  • Sung JM (1996) The insects-born fungus of Korea in color. Kyohak Publishing Co. Ltd., Seoul

    Google Scholar 

  • Sung JM, Shrestha B (2002) In vitro fruiting of Cordyceps militaris. In: Book of abstracts, 7th international mycological congress, August 11-17, Oslo, Norway, p 113

    Google Scholar 

  • Sung GH, Spatafora JW (2004) Cordyceps cardinalis sp. nov., a new species of Cordyceps with an east Asian-eastern North American distribution. Mycologia 96(3):658–666

    Article  PubMed  Google Scholar 

  • Sung JM, Kim CH, Yang KJ et al (1993) Studies on the distribution and utilization of Cordyceps militaris and C. nutans. Korean J Mycol 21:94–105

    Google Scholar 

  • Sung JM, Choi YS, Lee HK et al (1999) Production of fruiting body using cultures of entomopathogenic fungal species. Korean J Mycol 27:15–19

    Google Scholar 

  • Sung JM, Choi YS, Shrestha B et al (2002) Investigation on artificial fruiting of Cordyceps militaris. Korean J Mycol 30:6–10

    Article  Google Scholar 

  • Sung JM, Park YJ, Lee JO et al (2006) Selection of superior strains of Cordyceps militaris with enhanced fruiting body productivity. Mycobiology 34:131–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung GH, Hywel-Jones NL, Sung JM et al (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Slipinski S A, Leschen RA, Lawrence JF (2011) Order Coleoptera Linnaeus, 1758. In: Zhang, Z-Q. (Ed.), Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 203–208

    Google Scholar 

  • Sopp OJ (1911) Untersuchungen Uber Insekten-Vertilgende Pilze Bei den Letzten Kieferspinnerepidemien in Norwegen, vol. 2 of Skrift Vidensk-Selsk I. Mat-Naturv Klasse, Christiania, Norway

    Google Scholar 

  • Teng SC (1934) Notes on hypocreales from China. Dermatol Sin 4(10):269–298

    Google Scholar 

  • Teng SC (1936) Additional fungi from China IV. Dermatol Sin 7(6):752–823

    Google Scholar 

  • Tsai YJ, Lin LC, Tsai TH (2010) Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. J Agric Food Chem 58:4638–4643

    Article  CAS  PubMed  Google Scholar 

  • Tuli HS, Sharma AK, Sandhu SS, Kashyapc D (2013) Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci 93(23):863–869

    Article  CAS  PubMed  Google Scholar 

  • Tulasi G, Viswanath B (2013) Recent Trends To Improve Added Value Of Sericulture. International Journal of Advancements in Research & Technology 2(7):334-341

    Google Scholar 

  • T. Petch, (1934) Contributions to the Flora of Tropical America: XX. Bulletin of Miscellaneous Information (Royal Gardens, Kew) 1934 (5):202

    Google Scholar 

  • Vega FE, Meyling NV, Luangsa JJ, Blackwell M (2012) Fungal entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, London, pp 171–220

    Chapter  Google Scholar 

  • Vikineswary S, Wong KH, Murali N, Pamela RD (2013) Neuronal health can culinary and medicinal mushrooms help. J Tradit Complement Med 3:62–68

    Article  Google Scholar 

  • Wagner DL (2001) Moths. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 249–270

    Chapter  Google Scholar 

  • Wang XL, Yao YJ (2011) Host insect species of Ophiocordyceps sinensis: a review. ZooKeys 127:43–59

    Article  Google Scholar 

  • Wang SM, Lee LJ, Lin WW, Chang CM (1998) Effects of a water soluble extract of Cordyceps sinensis on steroidogenesis and capsular morphology of lipid droplets in cultured rat adrenocortical cells. J Cell Biochem 69:483–489

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Chen CQ, Zhang R (2002) Methodological studies on cultivation of Cordyceps militaris on pupae of Antheraea pernyi. J Anhui Agric Sci 30:965–968

    Google Scholar 

  • Wang BJ, Won SJ, Yu ZR, Su CL (2005) Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem Toxicol 43:543–552

    Article  CAS  PubMed  Google Scholar 

  • Wang I, Zhang WM, Hu B, Chen YQ, Qu LH (2008) Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers 31:147–156

    Google Scholar 

  • Wang Y, Wang M, Ling Y, Fan W, Yin H (2009) Structural determination and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps sinensis. Am J Chin Med 37:977–989

    Article  PubMed  Google Scholar 

  • Wang Y, Yin H, Lv X, Gao H, Wang M (2010) Protection of chronic renal failure by a polysaccharide from Cordyceps sinensis. Fitoterapia 81:397–402

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Yang WB, Liu YC, Chiu YH, Chen CT, Kao PF et al (2011a) A potent sphingomyelinase inhibitor from Cordyceps mycelia contributes its cytoprotective effect against oxidative stress in macrophages. J Lipid Res 52:471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZM, Peng X, Lee KL, Tang JC, Cheung PC, Wu JY (2011b) Structural characterization and immunomodulatory property of an acidic polysaccharide from mycelia culture of Cordyceps sinensis fungus Cs- HK1. Food Chem 125:637–643

    Article  CAS  Google Scholar 

  • Wang BS, Lee CP, Chen ZT, Yu HM, Duh PD (2012) Comparison of the hepatoprotective activity between cultured Cordyceps militaris and natural Cordyceps sinensis. J Funct Foods 4:489–495

    Article  Google Scholar 

  • Wang HP, Liu CW, Chang HW, Tsai JW, Sung YZ, Chang LC (2013) Cordyceps sinensis protects against renal ischemia/reperfusion injury in rats. Mol Biol Rep 40:2347–2355

    Google Scholar 

  • Wasson RG (1968) Soma: divine mushroom of immortality. New York Press, New York, pp 3–4

    Google Scholar 

  • Wei Q, Huang MQ (2009) Effects of nutrient ingredient in culture medium on the growth of Cordyceps militaris. Beijing Agric 27:36–38

    Google Scholar 

  • Wen L, Zhang YJ, Zhang TB et al (2004) Studies on culture of Cordyceps militaris on silkworm. Jiangsu Agric Sci 1:91–93

    Google Scholar 

  • Wen TC, Kang JC, Li GR et al (2008) Effects of different solid culture condition on fruit body and cordycepin output of Cordyceps militaris. Guizhou Agric Sci 36(4):92–94

    Google Scholar 

  • Wen TC, Xiao YP, Li WJ, Kang JC, Hyde KD (2014) Systematic analyses of Ophiocordyceps ramosissimum sp. nov., a new species from a larvae of Hepialidae in China. Phytotaxa 161(3):227–234

    Article  Google Scholar 

  • Willis JH (1959) Australian species of the fungal genus Cordyceps (Fr.) link with critical notes on collection in Australian herbaria. Muelleria 1:68–89

    Google Scholar 

  • Winkler D (2008) Yartsa gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 62:291–305

    Article  Google Scholar 

  • Winkler D (2009) Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability on the Tibetan plateau and in the Himalayas. Asian Med 5(2):291–316

    Article  Google Scholar 

  • Winkler D (2010) Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability onthe Tibetan plateau and in the Himalayas. Chinese J Grassland (Supl) 32:96–108

    Google Scholar 

  • Wu YH, Zhu SY, Ding YH et al (1996) Artificial cultivation conditions of Cordyceps militaris and the analysis of its fruit body components. Acta Edulis Fungi 3(2):59–61

    Google Scholar 

  • Wu Y, Sun H, Qin F, Pan Y, Sun C (2006) Effect of various extracts and a polysaccharide from the edible mycelia of Cordyceps sinensis on cellular and humoral immune response against ovalbumin in mice. Phytother Res 20:646–652

    Article  CAS  PubMed  Google Scholar 

  • Wen T C, Zhu RC, Kang JC et al. (2013) Ophiocordyceps xuefengensis sp. nov. from larvae of Phassus nodus (Hepialidae) in Hunan Province, southern China, Phytotaxa 123(1):41–50

    Google Scholar 

  • Xiao SR, Shi ZY, Chen OT (1983) Studies on Cordyceps habitat and morphology. Microbiology 10:5–6. (Chinese)

    Google Scholar 

  • Xie CY, Gu ZX, Fan GJ et al (2009) Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture. Appl Biochem Biotechnol 158:483–492

    Article  CAS  PubMed  Google Scholar 

  • Yahagi N (2008) Illustrated catalogue of Japanese Cordyceps (entomonogenous fungi): the Yahagi collection of Japanese Cordyceps stored in the Tohoku University Museum. Bull Tohoku Univ Museum 8:29–89

    Google Scholar 

  • Yan JK, Li L, Wang ZM, Leung PH, Wang WQ, Wu JY (2009) Acidic degradation and enhanced antioxidant activities of exopolysaccharides from Cordyceps sinensis mycelial culture. Food Chem 117:641–646

    Article  CAS  Google Scholar 

  • Yan JK, Wang WQ, Li L, Wu JY (2011) Physiochemical properties and antitumor activities of two α-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohyd Polym 85:753–758

    Article  CAS  Google Scholar 

  • Yang ML, Kuo PC, Hwang TL, Wu TS (2011) Anti-inflammatory principles from Cordyceps sinensis. J Nat Prod 74:1996–2000

    Article  CAS  PubMed  Google Scholar 

  • Yang ZL, Qin J, Xia C, Hu Q, Li QQ (2015) Ophiocordyceps highlandensis, a new entomopathogenic fungus from Yunnan, China. Phytotaxa 204(4):287–295

    Article  Google Scholar 

  • Yin DH, Zeng W, Li QS, Li L, Fu SQ, Huang TF, Luo OM (1990) Primary report on ecological investigation of Cordyceps sinensis resources in Ganzi, Sichuan. Living Things Speci Prod 5:10–13. (Chinese)

    Google Scholar 

  • Yoo HS, Shin JW, Cho JH, Son CG, Lee YW, Park SY et al (2004) Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol Sin 25:657–665

    CAS  PubMed  Google Scholar 

  • Yoon TJ, Yu KW, Shin KS, Suh HJ (2008) Innate immune stimulation of exo-polymers prepared from Cordyceps sinensis by submerged culture. Appl Microbiol Biotechnol 80:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2007) Cordycepin and Cordyceps sinensis reduce the growth of human promyelocytic leukaemia cells through the Wnt signalling pathway. Clin Exp Pharmacol Physiol 34:61–63

    Article  Google Scholar 

  • Yu HM, Wang BS, Huang SC et al (2006) Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J Agric Food Chem 54:3132–3138

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhao J, Zhu Q, Li SP (2007) Macrophage biospecific extraction and high performance liquid chromatography for hypothesis of immunological active components in Cordyceps sinensis. J Pharm Biomed Anal 44:439–443

    Article  CAS  PubMed  Google Scholar 

  • Yuan GH (1988) Domestication and cultivation of Cordyceps from Jilin Province. Edible Fungi 3:8

    Google Scholar 

  • Yuan GH (1989) Artificial cultivation of Cordyceps militaris. Life World 1:16–17

    Google Scholar 

  • Yue C (2010) Optimization on Cordyceps militaris’s cultivating conditions. Food Ind 2:60–61

    Google Scholar 

  • Yu Yamaguchi, Satomi Kagota, Kazuki Nakamura, Kazumasa Shinozuka, Masaru Kunitomo, (2000) Inhibitory effects of water extracts from fruiting bodies of culturedCordyceps sinensis on raised serum lipid peroxide levels and aortic cholesterol deposition in atherosclerotic mice. Phytotherapy Research 14 (8):650-652

    Google Scholar 

  • Zang M, Kinjo N (1998) Notes on the alpine Cordyceps of China and nearby nations. Mycotaxon 66:215–229

    Google Scholar 

  • Zang M, Yang D, Li C (1990) A new taxon in the genus Cordyceps from China. Mycotaxon 37:57–62

    Google Scholar 

  • Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnology Advanced 20:91–96

    Article  CAS  Google Scholar 

  • Zhang XZ (2003) Biological characteristics and cultivation techniques of Cordyceps militaris C-48. Edible Fungi 25(S1):12

    CAS  Google Scholar 

  • Zhang XK, Liu WX (1997) Experimental studies on planting Cordyceps militaris (L. ex Fr.) link with different culture materials. Edible Fungi China 16(2):21–22

    Google Scholar 

  • Zhang J, Song DL, Chen JX (2003) Physiological and biochemical changes of the silkworm, Bombyx mori infected by Cordyceps militaris. Acta Entomol Sin 46:674–678

    CAS  Google Scholar 

  • Zhang WM, Li TH, Chen VQ, Qu LH (2004) Cordyceps campsosterna, a new pathogen of Campsosternus auratus. Fungal Divers 17:239–242

    Google Scholar 

  • Zhang W, Yang J, Chen J, Hou Y, Han X (2005) Immunomodulatory and antitumour effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumour bearing mice. BiotechnolAppl Biochem 42:9–15

    CAS  Google Scholar 

  • Zhang W, Li J, Qiu S, Chen J, Zheng Y (2008) Effects of the exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis on immunocytes of H22 tumor bearing mice. Fitoterapia 79:168–173

    Article  PubMed  Google Scholar 

  • Zhao CY, Li H, Zhang M et al (2006) Optimization on conditions of artificial cultivation of Cordyceps militaris. J Shenyang Agric Univ 37:209–212

    CAS  Google Scholar 

  • Zheng QW, Wang YY, Gao SX (2008a) The study of Cordyceps militaris infecting the 5th instar silkworm. Edible Fungi 30(5):32–34

    CAS  Google Scholar 

  • Zheng SS, Xu C, Han NN et al (2008b) Optimum carbon source screening of Cordyceps militaris medium in artificial condition. J Heilongjiang August First Land Reclam Univ 20(1):8–11

    Google Scholar 

  • Zhou GQ, Han DH, Wan XX et al (2000) Behavior of Cordyceps militaris on the tussah and content of polysaccharide in fermentation liquid. J Dalian Inst Light Ind 19(2):108–111

    CAS  Google Scholar 

  • Zhou X, Luo L, Dressel W, Shadier G, Krumbiegel D, Schmidtke P et al (2008) Cordycepin is an immune regulatory active ingredient of Cordyceps sinensis. Am J Chin Med 3:967–980

    Article  Google Scholar 

  • Zhou X-W, Li L-J, Tian E-W (2013) Advances in research of the artificial cultivation of Ophiocordyceps sinensis in China. Crit Rev Biotechnol Online 1:11

    Google Scholar 

  • Zhu JS, Halpern GM, Jones K (1998) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis, part I. J Altern Complement Med 4(3):289–303

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, Liu X, Zhang G (2010) Revision of taxonomic system of the genus Hepialus (Lepidoptera: Hepialidae) currently adopted in China. J Hunan Univ Sci Tech (Natural Science Edition) 25(1):114–120

    Google Scholar 

  • Zhou X, Zhenghua Gong, Ying Su, Juan Lin, Kexuan Tang, (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. Journal of Pharmacy and Pharmacology 61 (3):279-291

    Google Scholar 

  • Zhao R, Guo C (2008) Optimizing on liquid culture media of Cordyceps sinensis mycelia. Journal of Tianjin Normal University (Natural Science Edition) 01

    Google Scholar 

Download references

Acknowledgments

The authors are very thankful to the Kala Azar Medical Research Center, Rambag Road, Muzaffarpur, Bihar; Central Tasar Research and Training Institute, Nagri, Ranchi, Jharkhand and Central Muga Eri Research and Training Institute, Lahdoigarh, Jorhat, Assam for providing necessary support for this publication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaubey, R., Singh, J., Baig, M.M., Kumar, A. (2019). Recent Advancement and the Way Forward for Cordyceps. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14846-1_15

Download citation

Publish with us

Policies and ethics