Skip to main content

Computable Isomorphisms of Distributive Lattices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11436))

Abstract

A standard tool for the classifying computability-theoretic complexity of equivalence relations is provided by computable reducibility. This gives rise to a rich degree-structure which has been extensively studied in the literature. In this paper, we show that equivalence relations, which are complete for computable reducibility in various levels of the hyperarithmetical hierarchy, arise in a natural way in computable structure theory. We prove that for any computable successor ordinal \(\alpha \), the relation of \(\varDelta ^0_{\alpha }\) isomorphism for computable distributive lattices is \(\varSigma ^0_{\alpha +2}\) complete. We obtain similar results for Heyting algebras, undirected graphs, and uniformly discrete metric spaces.

The work was supported by Nazarbayev University Faculty Development Competitive Research Grants N090118FD5342. The first author was supported by Russian Science Foundation, project No. 18-11-00028. The last author was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project № 1.13556.2019/13.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrews, U., Sorbi, A.: Joins and meets in the structure of ceers. Computability, Published online. https://doi.org/10.3233/COM-180098

  2. Andrews, U., Badaev, S., Sorbi, A.: A survey on universal computably enumerable equivalence relations. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp. 418–451. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50062-1_25

    Chapter  Google Scholar 

  3. Andrews, U., Lempp, S., Miller, J.S., Ng, K.M., San Mauro, L., Sorbi, A.: Universal computably enumerable equivalence relations. J. Symb. Logic 79(1), 60–88 (2014). https://doi.org/10.1017/jsl.2013.8

    Article  MathSciNet  MATH  Google Scholar 

  4. Ash, C.J.: Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees. Trans. Am. Math. Soc. 298(2), 497–514 (1986). https://doi.org/10.1090/S0002-9947-1986-0860377-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Ash, C.J., Knight, J.F.: Pairs of recursive structures. Ann. Pure Appl. Log. 46(3), 211–234 (1990). https://doi.org/10.1016/0168-0072(90)90004-L

    Article  MathSciNet  MATH  Google Scholar 

  6. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 144. Elsevier Science B.V., Amsterdam (2000)

    MATH  Google Scholar 

  7. Bazhenov, N., Marchuk, M.: Degrees of categoricity for prime and homogeneous models. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 40–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0_4

    Chapter  MATH  Google Scholar 

  8. Bazhenov, N., Mustafa, M., San Mauro, L., Sorbi, A., Yamaleev, M.: Classifying equivalence relations in the Ershov hierarchy. arXiv:1810.03559

  9. Bazhenov, N.A.: Effective categoricity for distributive lattices and Heyting algebras. Lobachevskii J. Math. 38(4), 600–614 (2017). https://doi.org/10.1134/S1995080217040035

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernardi, C.: On the relation provable equivalence and on partitions in effectively inseparable sets. Stud. Log. 40(1), 29–37 (1981). https://doi.org/10.1007/BF01837553

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernardi, C., Sorbi, A.: Classifying positive equivalence relations. J. Symb. Logic 48(3), 529–538 (1983). https://doi.org/10.2307/2273443

    Article  MathSciNet  MATH  Google Scholar 

  12. Ershov, Y.L.: Positive equivalences. Algebra Log. 10(6), 378–394 (1971). https://doi.org/10.1007/BF02218645

    Article  MathSciNet  MATH  Google Scholar 

  13. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)

    MATH  Google Scholar 

  14. Fokina, E., Friedman, S., Nies, A.: Equivalence relations that are \(\varSigma ^0_3\) complete for computable reducibility. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 26–33. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32621-9_2

    Chapter  Google Scholar 

  15. Fokina, E.B., Friedman, S., Harizanov, V., Knight, J.F., McCoy, C., Montalbán, A.: Isomorphism relations on computable structures. J. Symb. Logic 77(1), 122–132 (2012). https://doi.org/10.2178/jsl/1327068695

    Article  MathSciNet  MATH  Google Scholar 

  16. Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing’s Ideas in Logic. Lecture Notes in Logic, vol. 42, pp. 124–194. Cambridge University Press, Cambridge (2014)

    Chapter  Google Scholar 

  17. Gao, S., Gerdes, P.: Computably enumerable equivalence relations. Stud. Log. 67(1), 27–59 (2001). https://doi.org/10.1023/A:1010521410739

    Article  MathSciNet  MATH  Google Scholar 

  18. Goncharov, S.S.: Countable Boolean Algebras and Decidability. Siberian School of Algebra and Logic. Consultants Bureau, New York (1997)

    MATH  Google Scholar 

  19. Goncharov, S.S., Knight, J.F.: Computable structure and non-structure theorems. Algebra Log. 41(6), 351–373 (2002). https://doi.org/10.1023/A:1021758312697

    Article  MATH  Google Scholar 

  20. Grätzer, G.: Lattice Theory: Foundation. Birkhäuser/Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0018-1

    Book  MATH  Google Scholar 

  21. Ianovski, E., Miller, R., Ng, K.M., Nies, A.: Complexity of equivalence relations and preorders from computability theory. J. Symb. Logic 79(3), 859–881 (2014). https://doi.org/10.1017/jsl.2013.33

    Article  MathSciNet  MATH  Google Scholar 

  22. Melnikov, A.G., Nies, A.: The classification problem for compact computable metric spaces. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 320–328. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1_37

    Chapter  MATH  Google Scholar 

  23. Myhill, J.: Creative sets. Z. Math. Logik Grundlagen Math. 1, 97–108 (1955). https://doi.org/10.1002/malq.19550010205

    Article  MathSciNet  MATH  Google Scholar 

  24. Ng, K.M., Yu, H.: On the degree structure of equivalence relations under computable reducibility. Notre Dame J. Formal Log. (to appear)

    Google Scholar 

  25. Nies, A., Solecki, S.: Local compactness for computable polish metric spaces is \(\varPi ^1_1\)-complete. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 286–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6_29

    Chapter  Google Scholar 

  26. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

    Book  Google Scholar 

  27. Turlington, A.: Computability of Heyting algebras and distributive lattices. Ph.D. thesis, University of Connecticut (2010)

    Google Scholar 

  28. Visser, A.: Numerations, \(\lambda \)-calculus and arithmetic. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 259–284. Academic Press, London (1980)

    Google Scholar 

  29. Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Part of the research contained in this paper was carried out while the first and the last authors were visiting the Department of Mathematics of Nazarbayev University, Astana. The authors wish to thank Nazarbayev University for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Bazhenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazhenov, N., Mustafa, M., Yamaleev, M. (2019). Computable Isomorphisms of Distributive Lattices. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14812-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14811-9

  • Online ISBN: 978-3-030-14812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics