Skip to main content

Epigenetic Alterations: The Relation Between Occupational Exposure and Biological Effects in Humans

  • Chapter
  • First Online:
The DNA, RNA, and Histone Methylomes

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Exposome encompass the totality of human environmental exposures, providing a lifelong exposure history and complementing the genome. One of its domains is a specific external environment, which includes occupational exposure. Over the last decades, several publications have shown the higher incidences of exposure-related diseases and its relationship with DNA damage. However, there is a body of evidence that genetic variants cannot fully explain the variability in the risk of chronic diseases initiation and development, leaving a potential role the interaction between environmental and genetic factors. A key phenomenon are epigenetic modifications, heritable changes in gene expression that occur without changes in DNA sequence and play an important role in identifying mechanisms of xenobiotic-induced non-genotoxic carcinogenesis. Recently studies with occupational exposure individuals have shown substantial epigenetic alterations as effect of work-related activity with several xenobiotics, such as benzene, solvent, styrene, heavy metals, and mixtures of chemicals. Exposure to occupational toxicants may contribute to arising of adverse birth outcomes, neurological and other multifactorial diseases, and increased risk of cancer, and there is evidence that epigenetic aspects intermediate their effects in human health. In the current chapter, we review recently discoveries in the field of occupational exposure, health effects, and the interaction of epigenetic factors for such outcomes. The solid identification of key genetic and/or epigenetic events involved in chemical occupational-related carcinogenesis is a relevant step towards improvement of biomarkers to evaluate exposure, predict biological effects, and prevent adverse health consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alegría-Torres JA, Barretta F, Batres-Esquivel LE et al (2013) Epigenetic markers of exposure to polycyclic aromatic hydrocarbons in Mexican brickmakers: a pilot study. Chemosphere 91:475–480

    Article  PubMed  CAS  Google Scholar 

  • Alhamdow A, Lindh C, Hagberg J et al (2018) DNA methylation of the cancer-related genes F2RL3 and AHRR is associated with occupational exposure to polycyclic aromatic hydrocarbons. Carcinogenesis 39:869–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvanja MC, Bonner MR (2012) Occupational pesticide exposure and cancer risk: a review. J Toxicol Environ Health B Crit Rev 15:238–263

    Article  CAS  Google Scholar 

  • Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8:166–175

    Article  CAS  PubMed  Google Scholar 

  • Antonini JM (2003) Health effects of welding. Crit Rev Toxicol 33:61–103

    Article  CAS  PubMed  Google Scholar 

  • Arita A, Niu J, Qu Q et al (2012) Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ Health Perspect 120:198–203

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2004) Interaction profile for: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). US Department of Health and Human Services; Public Health Service, Atlanta

    Google Scholar 

  • Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Bal W, Protas AM, Kasprzak KS (2011) Genotoxicity of metal ions: chemical insights. Met Ions Life Sci 8:319–373

    CAS  PubMed  Google Scholar 

  • Benbrahim-Tallaa L, Baan RA, Grosse Y et al (2012) Carcinogenicity of diesel engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 13:663–664

    Article  PubMed  Google Scholar 

  • Benedetti D, Alderete BL, de Souza CT et al (2018) DNA damage and epigenetic alterations in soybean farmers exposed to complex mixtures of pesticides. Mutagenesis 33:87–95

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Trinidad AB, Medina-Díaz IM, Bernal-Hernández YY et al (2018) Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers. Food Chem Toxicol 113:125–133

    Article  CAS  PubMed  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  CAS  PubMed  Google Scholar 

  • Birkbak NJ, Wang ZC, Kim JY et al (2012) Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2:366–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackford AN, Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66:801–817

    Article  CAS  PubMed  Google Scholar 

  • Bollati S, Pesatori AC, Dioni L et al (2010) Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis 31:216–221

    Article  PubMed  CAS  Google Scholar 

  • Bolognesi C, Holland N (2016) The use of lymphocyte cytokinesis-block micronucleus assay for monitoring pesticide-exposed populations. Mutat Res 770:183–203

    Article  CAS  Google Scholar 

  • Bolt HM, Golka K (2007) The debate on carcinogenicity of permanent hair dyes: new insights. Crit Rev Toxicol 37:521–536

    Article  CAS  PubMed  Google Scholar 

  • Boucard AA, Maxeiner S, Sudhof TC (2014) Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. J Biol Chem 289:387–402

    Article  CAS  PubMed  Google Scholar 

  • Brook RD, Franklin B, Cascio W et al (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American heart association. Circulation 109:2655–2671

    Article  PubMed  Google Scholar 

  • Bryan TM, Englezou A, Dalla-Pozza L et al (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med 3:1271–1274

    Article  CAS  PubMed  Google Scholar 

  • Byun HM, Panni T, Motta V et al (2013) Effects of airbone pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 10:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantone L, Nordio F, Hou L et al (2011) Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers. Environ Health Perspect 119:964–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carugno M, Pesatori AC, Dioni L et al (2012) Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ Health Perspect 120:210–215

    Article  CAS  PubMed  Google Scholar 

  • Chappel G, Pogribny IP, Guyton KZ et al (2016) Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: a systematic literature review. Mutat Res Rev Mutat Res 768:27–45

    Article  CAS  Google Scholar 

  • Charbotel B, Fervers B, Droz JP (2014) Occupational exposures in rare cancers: a critical review of the literature. Crit Rev Oncol Hematol 90:99–134

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Yu H, Zhao J et al (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspec 114:297–301

    Article  CAS  Google Scholar 

  • Chen Q, Yan W, Duan E (2016) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng TF, Choudhuri S, Muldoon-Jacobs K (2012) Epigenetic target of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 32:643–653

    Article  CAS  PubMed  Google Scholar 

  • Cheung HH, Lee TL, Rennert OM et al (2009) DNA methylation of cancer genome. Birth Defects Res C Embryo Today 87:335–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa M, Davidson TL, Chen H et al (2005) Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res 592:79–88

    Article  CAS  PubMed  Google Scholar 

  • De Smith AJ, Kaur M, Gonseth S et al (2017) Correlates of prenatal and early-life tobacco smoke exposure and frequency of common gene deletions in childhood acute lymphoblastic leukemia. Cancer Res 77:1674–1683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Souza MR, Kahl VFS, Rohr P et al (2018) Shorter telomere length and DNA hypermethylation in peripheral blood of coal workers. Mutat Res 836:36–41

    Article  CAS  Google Scholar 

  • Delmonico L, Moreira AS, Franco MF et al (2015) CDKN2A(p14(ARF)/p16(INK4a)) and ATM promoter methylation in patients with impalpable breast lesions. Hum Pathol 46:1540–1547

    Article  CAS  PubMed  Google Scholar 

  • Dioni L, Hoxha M, Nordio F et al (2011) Effects of short-term exposure to inhalate particulate matter on telomere length, telomerase expression, and telomerase methylation in steel workers. Environ Health Perspect 119:622–627

    Article  CAS  PubMed  Google Scholar 

  • Duan H, He Z, Ma J et al (2013) Global and MGMT promoter hypomethylation independently associated with genomic stability of lymphocytes in subjects exposed to high-dose polycyclic aromatic hydrocarbon. Arch Toxicol 87:2013–2022

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  • Faisandier L, Bonneterre V, De Gaudemaris R et al (2011) Occupational exposome: a network-based approach for characterizing occupational health problems. J Biomed Inform 44:545–552

    Article  PubMed  Google Scholar 

  • Fang SC, Cassidy A, Christiani DC (2010) A systematic review of occupational exposure to particulate matter and cardiovascular disease. Int J Environ Res Public Health 7:1773–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer BM, Wong JK, Degan S et al (2013) Increased expression of senescence markers in cystic fibrosis airways. Am J Physiol Lung Cell Mol Physiol 304:L394–L400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritisch L, Benke G, Risch HA et al (2015) Occupational exposure to N-nitrosamines and pesticides and risk of pancreatic cancer. Occup Environ Med 72:678–683

    Article  Google Scholar 

  • Gaffney A, Christiani DC (2015) Gene-environment interaction from international cohorts: impact on development and evolution of occupational and environmental lung and airway disease. Semin Respir Crit Care Med 36:347–357

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Lestón J, Roma-Torres J, Vilares M et al (2012) Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environ Int 43:29–36

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Öner D, Poels K et al (2017) Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace. Nanotoxicology 11:1195–1210

    Article  CAS  PubMed  Google Scholar 

  • Godderis L, De Raedt K, Tabish AM et al (2012) Epigenetic changes in lymphocytes of solvent-exposed individuals. Epigenomics 4:269–277

    Article  CAS  PubMed  Google Scholar 

  • Goodrich JM, Basu N, Franzblau A et al (2013) Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ Mol Mutagen 54:195–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerardel C, Deltour S, Pinte S et al (2001) Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J Biol Chem 276:3078–3089

    Article  CAS  PubMed  Google Scholar 

  • Guilleret I, Yan P, Grange F et al (2002) Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer 101:335–341

    Article  CAS  PubMed  Google Scholar 

  • Hervouet E, Cheray M, Vallette FM et al (2013) DNA methylation and apoptosis resistance in cancer cells. Cell 2(3):545–573

    Article  CAS  Google Scholar 

  • Heuser VD, Andrade VM, da Silva J et al (2005) Comparison of genetic damage in Brazilian footwear-workers exposed to solvent-based or water-based adhesive. Mutat Res 583:85–94

    Article  CAS  PubMed  Google Scholar 

  • Holland N (2017) Future of environmental research in the age of epigenomics and exposomics. Rev Environ Health 32:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JY, Yu SY, Kim SY et al (2016) Association analysis of toluene exposure time with high-throughput mRNA expressions and methylation patterns using in vivo samples. Environ Res 146:59–64

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Zhang X, Wang D et al (2012) Environmental chemical exposures and human epigenetics. Int J Epidemiol 41:79–105

    Article  PubMed  Google Scholar 

  • Hu G, Li P, Cui X et al (2018) Cr(VI)-induced methylation and down-regulation of DNA repair genes and its association with markers of genetic damage in workers and 16HBE cells. Environ Poll 238:833–843

    Article  CAS  Google Scholar 

  • IARC (1990) International agency for research on cancer. Chromium, nickel and welding. IARC Monogr Eval Carcinog Risks Hum 49:447–525

    Google Scholar 

  • IARC (2010) International agency for research on cancer. Somearomatic amines, organic dyes, and related exposures. IARC Monogr Eval Carcinog Risks Hum 99:499–658

    Google Scholar 

  • Imbesi S, Musolino C, Allegra A (2013) Oxidative stress in oncohematologic diseases: an update. Expert Rev Hematol 6:317–325

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJL, de Lange T (2004) Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol 14:2302–2308

    Article  CAS  PubMed  Google Scholar 

  • Jamebozorgi I, Majidizadeh T, Pouryaghoub G et al (2018) Aberrant DNA methylation of two tumor suppressor genes, p14ARF and p15INK4b, after chronic occupational exposure to low level of benzene. Int J Occup Environ Med 9:145–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarmalaite S, Kannio A, Anttila S et al (2003) Aberrant p16 promoter methylation in smokers and former smokers with nonsmall cell lung cancer. Int J Cancer 106:913–918

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Oliver P, Davies KE et al (2006) Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J Biol Chem 281:11834–11845

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Garza O, Guo L, Byun HM et al (2018) Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol Appl Pharmacol 339:65–72

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  • Kahl VFS, Dhillon VS, Simon D et al (2018a) Chronic occupational exposure endured by tobacco farmers from Brazil and association with DNA damage. Mutagenesis 33:119–128

    Article  CAS  PubMed  Google Scholar 

  • Kahl VFS, Dhillon V, Fenech M et al (2018b) Occupational exposure to pesticides in tobacco fields: the integrated evaluation of nutritional intake and susceptibility on genomic and epigenetic instability. Oxid Med Cell Longev 2018:7017423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kile ML, Fang S, Baccarelli AA et al (2013) A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ Health 12:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Takahashi Y, Hirose Y et al (2006) The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer 53:295–302

    Article  PubMed  Google Scholar 

  • Koturbash I, Beland FA, Pogribny IP (2011) Role of epigenetic events in chemical carcinogenesis—a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol Mech Methods 21:289–297

    Article  CAS  PubMed  Google Scholar 

  • Léon G, Perez LE, Linares JC et al (2007) Genotoxic effects in wild rodents (Rattus rattus and Mus musculus) in an open coal mining area. Mutat Res 630:42–49

    Article  PubMed  CAS  Google Scholar 

  • Leonard SS, Chen BT, Stone SG (2010) Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species. Part Fibre Toxicol 7:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Xu M, Wang S et al (2011) Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol Lett 203:48–53

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yang X, Xu M et al (2013) Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin Toxicol 51:225–229

    Article  CAS  Google Scholar 

  • Li H, Hedmer M, Wodjacz T et al (2015) Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes. Environ Mol Mutagen 56:684–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Akerman G, Lidén C et al (2016) Alterations of telomere length and DNA methylation in hairdressers: a cross-sectional study. Environ Mol Mutagen 57:159–167

    Article  CAS  PubMed  Google Scholar 

  • Linqing Y, Bo X, Xueqin Y et al (2016) Mitochondrial DNA hypomethylation in chrome plating workers. Toxicol Lett 243:1–6

    Article  CAS  Google Scholar 

  • Long AS, Watson M, Arlt VM et al (2016) Oral exposure to commercially available coal tar-based pavement sealcoat induces murine genetic damage and mutations. Environ Mol Mutagen 57:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Bai Y, Pu H et al (2015) Histone methylation in nickel-smelting industrial workers. PLoS One 10:e0140339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manno M, Viau C, Cocker J et al (2009) Biomonitoring for occupational health risk assessment (BOHRA). Toxicol Lett 192:3–16

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Alfaro M, Cárabez-Trejo A, Gallegos-Corona MA et al (2010) Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse. J Appl Toxicol 30:226–232

    PubMed  Google Scholar 

  • Masiol M, Agostinelli C, Formenton G (2014) Thirteen years of air pollution hourly monitoring in a large city: potential sources, trends, cycles and effects of car-free days. Sci Total Environ 494-495:84–96

    Article  CAS  PubMed  Google Scholar 

  • Maxwell P, Salnikow K (2004) HIF-1, an oxygen and metal responsive transcription factor. Cancer Biol Ther 3:29–35

    Article  CAS  PubMed  Google Scholar 

  • Meehan RR, Thomson JP, Lentini A et al (2018) DNA methylation as a genomic marker of exposure to chemical and environmental agents. Curr Opinion Chem Biol 45:48–56

    Article  CAS  Google Scholar 

  • Mostafalou S, Abdollahi M (2017) Pesticides: an update of human exposure and toxicity. Arch Toxicol 91:549–599

    Article  CAS  PubMed  Google Scholar 

  • Murnare JP (2011) Telomere dysfunction and chromosome instability. Mutat Res 730:28–36

    Article  CAS  Google Scholar 

  • Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylander-French LA, Wu MC, French JE et al (2014) DNA methylation modifies urine biomarker levels in 1,6-hexamethylene diisocyanate exposed workers: a pilot study. Toxicol Lett 231:217–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nature Rev 11:171–181

    Article  CAS  Google Scholar 

  • O’Sullivan RJ, Kubicek S, Schreiber SL et al (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavanello S, Bollati V, Pesatori AC et al (2009) Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals. Int J Cancer 125:1692–1697

    Article  CAS  PubMed  Google Scholar 

  • Pilsner JR, Liu X, Ahsan H et al (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladesh adults. Am J Clin Nutr 86:1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Pottier G, Viau M, Ricoul M et al (2013) Lead exposure induces telomere stability in human cells. PLoS One 8:e67501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravegnini G, Sammarini G, Hrelia P et al (2015) Key genetic and epigenetic mechanisms in chemical carcinogenesis. Toxicol Sci 148:2–13

    Article  CAS  PubMed  Google Scholar 

  • Reamon-Buettner SM, Mutschler V, Borlak J (2008) The next innovation cycle in toxicogenomics: environmental epigenetics. Mutat Res 659:158–165

    Article  CAS  PubMed  Google Scholar 

  • Reddel R (2014) Telomere maintenance mechanism in cancer: clinical implications. Curr Pharm Des 20:6361–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinsky RA, Hornung RW, Silver SR et al (2002) Benzene exposure and hematopoietic mortality: a long-term epidemiologic risk assessment. Am J Ind Med 42:474–480

    Article  CAS  PubMed  Google Scholar 

  • Risch A, Plass C (2008) Lung cancer epigenetics and genetics. Int J Cancer 123:1–7

    Article  CAS  PubMed  Google Scholar 

  • Scanlon SE, Scanlon CD, Hegan DC et al (2017) Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis 38:627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnekenburger M, Talaska G, Puga A (2007) Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol 27:7089–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schottenfeld D, Beebe-Dimmer J (2006) Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin 56:69–83

    Article  PubMed  Google Scholar 

  • Schulte PA, Hauser JE (2012) The use of biomarkers in occupational health research, practice, and policy. Toxicol Lett 213:91–99

    Article  CAS  PubMed  Google Scholar 

  • Sekhotha MM, Monyeki KD, Sibuyi ME (2016) Exposure to agrochemicals and cardiovascular disease: a review. Int J Environ Res Public Health 13:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sha Y, Zhou W, Yang Z et al (2014) Changes in poly(ADP-ribosyl)ation patterns in workers exposed to BTX. PLoS One 9:e106146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silins I, Högberg J (2011) Combined toxic exposures and human health: biomarkers of exposure and effect. Int J Environ Res Public Health 8:629–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Siroux V, Agier L, Slama R (2016) The exposome concept: a challenge and a potential driver for environmental health research. Eur Respir Rev 25:124–129

    Article  PubMed  Google Scholar 

  • Song MK, Ryu JC (2015) Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC). Int J Hyg Environ Health 218:590–602

    Article  CAS  PubMed  Google Scholar 

  • Sparks AB, Morin PJ, Vogelstein B (1998) Mutational analysis of the APC/beta catenin/tcf pathway in colorectal cancer. Cancer Res 58:1130–1134

    CAS  PubMed  Google Scholar 

  • Sun R, Liu J, Wang B et al (2015) Deoxyribonucleic acid (DNA) methyltransferase contributes to p16 promoter CpG island methylation in lung adenocarcinoma with smoking. Int J Clin Exp Med 8:15773–15779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tas U, Ogeturk M, etal MS (2011) Hepatotoxic activity of toluene inhalation and protective role of melatonin. Toxicol Ind Health 27:465–473

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Patiolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure – a critical review. Toxicol Pathol 31:575–588

    CAS  PubMed  Google Scholar 

  • Tiffon C (2018) The impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci 19(11):E3425

    Article  PubMed  CAS  Google Scholar 

  • Tran NQV, Miyake K (2017) Neurodevelopmental disorders and environmental toxicants: epigenetics as an underlying mechanism. Int J Genomics 2017:7526592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsutsui M, Shimokawa H, Otsuji Y et al (2010) Pathophysiological relevance of NO signaling in the cardiovascular system: novel insight from mice lacking all NO synthases. Pharmacol Ther 128:499–508

    Article  CAS  PubMed  Google Scholar 

  • van der Plaat DA, Jong K, de Viries M et al (2018) Occupational exposure to pesticides is associated with differential DNA methylation. Occup Environ Med 75:427–435

    Article  PubMed  Google Scholar 

  • Wang TC, YS S, Wang H et al (2012) Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. J Hazard Mater 213-214:440–446

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Lu L, He Y et al (2016) LincRNAs and base modifications of p53 induced by arsenic methylation in workers. Chem Biol Interact 246:1–10

    Article  CAS  PubMed  Google Scholar 

  • WHO (World Health Organziation) (2010) Global status report on noncommunicable diseases. WHO, Geneva, p 176

    Google Scholar 

  • Xu M, Yu Z, Hu F et al (2017) Identification of differential plasma miRNA profiles in Chinese workers with occupational lead exposure. Biosci Rep 37:BSR20171111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Ma J, Zhang B et al (2012) CpG site-specific hypermethylation of p16 INK4α in peripheral blood lymphocytes of PAH-exposed workers. Cancer Epidemiol Biom Prev 21:182–190

    Article  CAS  Google Scholar 

  • Zhang Y, Schottker B, Ordóñez-Mena J et al (2015a) F2RL3 methylation, lung cancer incidence and mortality. Int J Cancer 137:1739–1748

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Duan H, Gao F et al (2015b) Increased micronucleus, nucleoplasmic bridge, nuclear bud frequencies in the peripheral blood lymphocytes of diesel engine exhaust-exposed workers. Toxicol Sci 143:408–417

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Elgizouli M, Schottker B et al (2016a) Smoking-associated DNA methylation markers predict lung cancer incidence. Clin Epigenetics 8:12

    Article  CAS  Google Scholar 

  • Zhang Z, Li J, He Z et al (2016b) Associations between DNA methylation in DNA damage response-related genes and cytokinesis-block micronucleus cytome index in diesel engine exhaust-exposed workers. Arch Toxicol 90:1997–2008

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Takaku M, Zou L et al (2017) Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551:105–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziech D, Franco R, Pappa A (2010) The role of epigenetics in environmental and occupational. Chem Biol Interact 188:340–349

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Silva Kahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kahl, V.S., Cappetta, M., Da Silva, J. (2019). Epigenetic Alterations: The Relation Between Occupational Exposure and Biological Effects in Humans. In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_11

Download citation

Publish with us

Policies and ethics