Centrifugal Pumps pp 307-399 | Cite as
Suction Capability and Cavitation
- 682 Downloads
Abstract
Definition of terms: “Cavitation” means the partial evaporation of liquid in a flow system. A cavity filled with vapor is created when the static pressure in a flow locally drops to the vapor pressure of the liquid due to excess velocities, so that some fluid evaporates and a two-phase flow is created in a small domain of the flow field. The vapor condenses suddenly (“implodes”) as soon as it is transported downstream into zones where the static pressure again exceeds the vapor pressure. With increasing extension of the cavitating zone with two-phase flow, the head and efficiency of the pump may be impaired, noise and vibrations excited and components damaged through cavitation erosion under certain conditions. When using the term “cavitation” the “cavitating flow” - i.e. the occurrence of local zones with two-phase flow - and “cavitation erosion” or cavitation damage must be well distinguished.
References
- 1.Arn, C.: Analyse et prediction de la baisse de rendement des turbines Francis par cavitation à bulles. Diss. EPF Lausanne (1998)Google Scholar
- 2.Balasubramanian, R., Bradshaw, S., Sabine, E.: Influence of impeller leading edge profiles on cavitation and suction performance. In: Proceedings of 27th International Pump Users Symposium, Texas A & M, pp. 34–44 (2011)Google Scholar
- 3.Berten, S., et al.: Investigation of cavitating flow phenomena in a high-energy pump diffuser at partload operation. In: International Rotating Equipment Conference. Düsseldorf session 8–3 (2012)Google Scholar
- 4.Bourdon, P., et al.: Vibratory characteristics of erosive cavitation vortices downstream of a fixed leading edge cavity. In: IAHR Symposium Belgrade, Paper H3 (1990)Google Scholar
- 5.Cooper, P., et al.: Reduction of cavitation damage in a high-energy water injection pump. ASME AJK2011–06092Google Scholar
- 6.Cooper, P., et al.: Elimination of cavitation-related instabilities and damage in high-energy pump impellers. In: 8th International Pump Users Symposium, Houston (1991)Google Scholar
- 7.Cooper, P., Antunes, F.: Cavitation damage in boiler feed pumps. EPRI CS-3158 (1983)Google Scholar
- 8.Cooper, P.: Pump Hydraulics—advanced short course 8. In: 13th Intl Pump Users Symposium, Houston (1996)Google Scholar
- 9.Dreiß, A.: Untersuchung der Laufradkavitation einer radialen Kreiselpumpe durch instationäre Druckmessungen im rotierenden System. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 5. Verlag Faragallah (1997)Google Scholar
- 10.Dupont, P.: Etude de la dynamique d’une poche de cavitation partielle en vue de la prédiction de l’érosion dans les turbomachines hydrauliques. Diss. EPF Lausanne (1993)Google Scholar
- 11.Durrer, H.: Kavitationserosion und Strömungsmechanik. Techn. Rundschau. Sulzer. 3, 55–61 (1986)Google Scholar
- 12.EUROPUMP-brochure: NPSH for rotodynamic pumps: a reference guide. Elsevier (1999)Google Scholar
- 13.Farhat, M.: Contribution à l’étude de l’érosion de cavitation: mécanismes hydrodynamiques et prediction. Diss. EPF Lausanne (1994)Google Scholar
- 14.Franc, J.P., et al.: La Cavitation. Mechanismes physiques et aspects industriels. Presses Universitaires Grenoble (1995)Google Scholar
- 15.Friedrichs, J.: Auswirkungen instationärer Kavitationsformen auf Förderhöhenabfall und Kennlinieninstabilität von Kreiselpumpen. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 9. Verlag Faragallah (2003)Google Scholar
- 16.Gantar, M.: The influence of cross section size of the diffuser channel on the hydraulic and cavitation characteristics of multi-stage radial pumps. In: Turboinstitut Conference on Fluid Flow Machinery. Ljubljana p. 469 (1984)Google Scholar
- 17.Gülich, J.F., et al.: Pump vibrations excited by cavitation. In: IMechE Conference on Fluid Machinery. The Hague (1990)Google Scholar
- 18.Gülich, J.F., Clother, A., Martens, H.J.: Cavitation noise and erosion in jet cavitation test devices and pumps. In: 2nd ASME Pumping Machinery Symposium. Washington (1993)Google Scholar
- 19.Gülich, J.F., Pace, S.: Quantitative prediction of cavitation erosion in centrifugal pumps. In: IAHR Symposium Montreal, Paper 42 (1986)Google Scholar
- 20.Gülich, J.F., Pace, S.E.: Solving pump problems related to hydraulic instabilities and cavitation. In: EPRI Power Plant Pumps Symposium, Tampa (1991)Google Scholar
- 21.Gülich, J.F., Rösch, A.: Kavitationserosion in Kreiselpumpen. Techn. Rundschau. Sulzer. 1, 28–32 (1988)Google Scholar
- 22.Gülich, J.F.: Ähnlichkeitskenngrößen für Saugfähigkeit und Blasenausbreitung bei Pumpen. Techn. Rundschau. Sulzer. 2, 66–69 (1980)Google Scholar
- 23.Gülich, J.F.: Beitrag zur Bestimmung der Kavitationserosion in Kreiselpumpen auf Grund der Blasenfeldlänge und des Kavitationsschalls. Diss. TH Darmstadt (1989)Google Scholar
- 24.Gülich, J.F.: Calculation of metal loss under attack of erosion-corrosion or cavitation erosion. In: International Conference on Advances in Material Technology Fossil Power Plants. Chicago (1987)Google Scholar
- 25.Gülich, J.F.: Guidelines for prevention of cavitation in centrifugal feedpumps. EPRI Report GS-6398, (1989)Google Scholar
- 26.Gülich, J.F.: Kavitationsdiagnose an Kreiselpumpen. Techn. Rundschau. Sulzer. 1, 29–35 (1992)Google Scholar
- 27.Gülich, J.F.: Möglichkeiten und Grenzen der Vorausberechnung von Kavitationsschäden in Kreiselpumpen. Forsch. Ing. Wes. 63(1/2), 27–39 (1997)Google Scholar
- 28.Gülich, J.F.: Selection criteria for suction impellers of centrifugal pumps. World Pumps, Parts 1 to 3, January, March, April, (2001)Google Scholar
- 29.Hergt, P., et al.: Influence of a diffuser in front of a centrifugal impeller. In: 8th Conference Fluid Machinery, Budapest, pp. 333–340 (1987)Google Scholar
- 30.Hergt, P., et al.: The suction performance of centrifugal pumps—possibilities and limits of improvements. In: Proceedings 13th International Pump Users Symposium, Houston pp. 13–25 (1996)Google Scholar
- 31.Hirschi, R.: Prédiction par modélisation numerique tridimensionelle des effects de la cavitation à poche dans les turbomachines hydrauliques. Diss. EPF Lausanne (1998)Google Scholar
- 32.Ido, A., Uranishi, K.: Tip clearance cavitation and erosion in mixed-flow pumps. ASME Fluid Mach. Forum FED 119, 27–29 (1991)Google Scholar
- 33.Keller, A., et al.: Maßstabseffekte bei der Strömungskavitation. Forsch. Ing. Wes. 65, 48–57 (1999)CrossRefGoogle Scholar
- 34.Keller, A.: Einfluß der Turbulenz der Anströmung auf den Kavitationsbeginn. Pumpentagung Karlsruhe, C-4 (1996)Google Scholar
- 35.Laborde, R., et al.: Tip clearance and tip vortex cavitation in an axial flow pump. ASME J. Fluids. Eng. 119, 680–685 (1997)CrossRefGoogle Scholar
- 36.Ludwig, G.: Experimentelle Untersuchungen zur Kavitation am saugseitigen Dichtspalt von Kreiselpumpen sowie zu sekundären Auswirkungen des Spaltstromes. Diss TH Darmstadt (1992)Google Scholar
- 37.Marks, J.: Experimentelle Untersuchung der Stofftrennung mittels Kavitation am Beispiel von Ammoniak-Wasser-Gemischen. Diss. TU Berlin. Mensch & Buch Verlag, Berlin (2005)Google Scholar
- 38.McCaul, C., et al.: A new highly cavitation resistant casting alloy and its application in pumps. NACE-Corrosion, New Orleans (1993)Google Scholar
- 39.Michell, F.L., et al.: Twenty-three years of operating experience with the world’s largest boiler feedwater pump. In: Proceedings of 14th International Pump Users Symposium, Texas A & M, pp. 75–83 (1998)Google Scholar
- 40.Piltz, H.H.: Werkstoffzerstörung durch Kavitation. Kavitationsuntersuchungen an einem Magnetostriktions-Schwinggerät. Diss. TH Darmstadt (1963)Google Scholar
- 41.Rieger, H.: Kavitation und erosion. VDI Ber. 354, 139–148 (1979)Google Scholar
- 42.Rütschi, K.: Messung und Drehzahlumrechnung des NPSH-Wertes bei Kreiselpumpen. Schweiz. Ing. u. Arch. 98(39), 971–974 (1980)Google Scholar
- 43.Schiavello, B., et al.: Improvement of cavitation performance and impeller life in high-energy boiler feedpumps. In: IAHR Symposium Trondheim (1988)Google Scholar
- 44.Schiavello, B.: Prescott M: Field cases due to various cavitation damage mechanisms: analysis and solutions. EPRI Power Plant Pumps Symp, Tampa (1991)Google Scholar
- 45.Schiavello, B.: Cavitation and recirculation troubleshooting methodology. In: 10th International Pump Users Symposium, Houston (1993)Google Scholar
- 46.Spohnholtz, H.H.: NPSH-Verhalten von Halbaxialpumpen bei Teillast. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 4. Verlag Faragallah (1997)Google Scholar
- 47.Schmidt, T.: Experimentelle Untersuchungen zum Saugverhalten von Kreiselpumpe mittlerer spezifischer Drehzahl bei Teillast. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 5. Verlag Faragallah (1997)Google Scholar
- 48.Scott, C., Ward, T.: Cavitation in centrifugal pump diffusers. Proc. ImechE. C. 452/042 (1992)Google Scholar
- 49.Simoneau, R., Mossoba, Y.: Field experience with ultra-high cavitation resistance alloys in Francis turbines. In: IAHR Symposium Trondheim, Paper K1 (1988)Google Scholar
- 50.Simoneau, R.: A new class of high strain hardening austenitic stainless steels to fight cavitation erosion. In: IAHR Symposium Montreal, Paper 83 (1986)Google Scholar
- 51.Simoneau, R.: Cobalt containing austenitic stainless steels with high cavitation erosion resistance. US Patent 4588440 (1986)Google Scholar
- 52.Simoneau, R.: Transposition of cavitation marks on different hardness metals. ASME FEDSM97-3300 (1997)Google Scholar
- 53.Sloteman, D.P., et al.: Control of back-flow at the inlets of centrifugal pumps and inducers. In: 1st International Pump Symposium, Houston (1984)Google Scholar
- 54.Sloteman, D.P.: Cavitation in high-energy pumps—detection and damage potential. In: Proceedings of 23rd Interntational Pump Users Symposium, Texas A & M, pp. 29–38 (2007)Google Scholar
- 55.Schmidt, T., et al.: NPSH-Verhalten von Halbaxialpumpen bei Teillast. Pumpentagung Karlsruhe, C-5 (1996)Google Scholar
- 56.Steller, K. et al.: Comments on erosion tests conducted in an ASTM interlaboratory test program. J. Test. Eval. 103–110 (1979)Google Scholar
- 57.Striedinger, R.: Beitrag zur Bedeutung der Wasserqualität und von Maßstabseffekten in Kreiselpumpen bei beginnender Kavitation. Diss TU Darmstadt, Shaker (2002)Google Scholar
- 58.Thamsen, P.U., et al.: Cavitation in single-vane sewage pumps. ISROMAC 12-2008–20196Google Scholar
- 59.Timcke, J.H.: NPSH-Umrechnung quadratisch oder nicht? ingenieur verlag nagel, Δp Das moderne Pumpenmagazin 7, Teil 1: Nr 3, 54–56 + 58–60, Teil 2: Nr 2, pp. 50–53 (2001)Google Scholar
- 60.Tsujimoto, Y., et al.: Observation of oscillating cavitation in an inducer. ASME J. Fluids. Eng. 119, 775–781 (1997)CrossRefGoogle Scholar
- 61.Uetz, H.: Abrasion und Erosion. Hanser, München (1986)Google Scholar
- 62.Visser, C.F.: Pump impeller lifetime improvement through visual study of leading-edge cavitation. In: 15th International Pump Users Symposium, Houston (1998)Google Scholar
- 63.Worster, D.M., Worster, C.: Calculation of 3D-flows in impellers and its use in improving cavitation performance in centrifugal pumps. In: 2nd Conference on Cavitation, Paper IMechE C203/83 (1983)Google Scholar
- 64.Yedidiah, S.: Oscillations at low NPSH caused by flow conditions in the suction pipe. ASME Cavitation and Multiphase Flow Forum (1974)Google Scholar
- 65.Skara, V.: Expermiental observation of cavitation phenomena in centrifugal pump impellers at part load. Diss. TU Braunschweig (2015)Google Scholar
- 66.Bolleter, U, Carney, B.: Solution to cavitation-induced vibration problems in crude-oil pipeline pumps. In: 8th Pump Users Symposium Texas A&M (1991)Google Scholar
- 67.Liebner, T., Cowan, D., Bradshaw, S.: Influence of wear ring geometry on suction performance. In: 32nd Pump Users Symposium Texas A&M (2016)Google Scholar
- 68.Bachert, R.: Dreidimensionale, instationäre Effekte kavitierender Strömungen – Analysen an Einzelprofilen und in einer Radialpumpe. Diss. TU Darmstadt (2004)Google Scholar
- 69.Bradshaw, S., Sabini, E.: Modification of BB1 vibration characteristics to meet ISO 13709 limits. In: Texas A&M Pump Symposium (2011)Google Scholar
- 70.Cowan, D., Liebner, T., Bradshaw, S.: Influence of impeller suction specific speed on vibration performance. In: 29th International Pump Users Symposium. Houston, pp. 18–47 (2013)Google Scholar