Centrifugal Pumps pp 219-305 | Cite as
Partload Operation, Impact of 3-D Flow Phenomena Performance
- 671 Downloads
Abstract
A pump working significantly below the best efficiency flow rate is said to operate at partload. At low specific speeds this can be roughly assumed at q* < 0.8, at high nq below q* < 0.9. Since blade inlet angles and channel cross sections are too large for the reduced flow rate, flow patterns during partload operation fundamentally change compared with the design point. The flow becomes highly 3-dimensional since it separates in the impeller and the collector. Finally, recirculations are observed at impeller inlet and outlet at sufficiently low flow. An easy means to obtain information on the impeller flow are stroboscopic observations of tufts. Flow patterns in a radial impeller of nq = 22 gained in this way are shown in Fig. 5.1 [B.20]. It can be seen that the flow is attached at q* > 0.8 while increasingly large zones with separation and recirculation are observed at a lower flow rates. Similar flow patterns were found on impellers of nq = 26 and 33.
References
- 1.Agrawal, D.P., et al.: Effect of inlet velocity distribution on the vaned radial diffuser performance, pp. 71–75. ASME Fluid Mach. Forum, Portland (1991)Google Scholar
- 2.Braun, O.: Part load flow in radial centrifugal pumps. Dissertation, EPF Lausanne (2009)Google Scholar
- 3.Bross, S., Brodersen, S., Saathoff, H., Stark, U.: Experimental and theoretical investigation of the tip clearance flow in an axial flow pump. In: 2nd European Conference on Turbomachinery, Antwerpen, pp. 357–364 (1997)Google Scholar
- 4.Canavelis, R., Lapray, J.F.: Effect of suction duct design on the performance of mixed flow pump. IMechE Paper, C333/88 (1988)Google Scholar
- 5.Carey, C., et al.: Studies of the flow of air in a rotor model mixed-flow pump by Laser/Doppler anemometry. NEL-Reports 698 (1985), 699 (1985), 707 (1987)Google Scholar
- 6.Cooper, P., et al.: Minimum continuous stable flow in centrifugal pumps. In: Proceedings of Symposium on Power Plant Pumps, New Orleans, 1987, EPRI CS-5857 (1988)Google Scholar
- 7.Dobat, A., Saathoff, H., Wulff, D.: Experimentelle Untersuchungen zur Entstehung von rotating stall in Axialventilatoren. VDI-Bericht. 1591, 345–360 (2001)Google Scholar
- 8.Dobener, E.: Über den Strömungswiderstand in einem rotierenden Kanal. Dissertation, TH Darmstadt (1959)Google Scholar
- 9.Eckardt, D.: Detailed flow investigations within a high-speed centrifugal compressor impeller. ASME J. Fluids. Eng. 98, 390–402 (1976)CrossRefGoogle Scholar
- 10.Eckardt, D.: Flow field analysis of radial and backswept centrifugal compressor impellers. In: 25th International Gas Turbine Conference on ASME, New Orleans, pp. 77–86 (1980)Google Scholar
- 11.Fraser, W.H.: Recirculation in centrifugal pumps. In: ASME Winter Annual Meeting, Washington DC, pp. 65–86 (1981)Google Scholar
- 12.Friedrichs, J., et al.: Effect of stator design on stator boundary layer flow in a highly loaded single-stage axial-flow low-speed compressor. ASME J. Turbomach. 123, 483–489 (2001)CrossRefGoogle Scholar
- 13.Friedrichs, J.: Auswirkungen instationärer Kavitationsformen auf Förderhöhenabfall und Kennlinieninstabilität von Kreiselpumpen. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 9. Verlag Faragallah (2003)Google Scholar
- 14.Goltz, I., Kosyna, G., Stark, U., Saathoff, H., Bross, S.: Stall inception phenomena in a single-stage axial pump. In: 5th European Conference on Turbomachinery, Prague (2003)Google Scholar
- 15.Goltz, I.: Entstehung und Unterdrückung der Kennlinieninstabilität einer Axialpumpe. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 10. Verlag Faragallah (2006)Google Scholar
- 16.Goto, A.: Study of internal flows in a mixed-flow pump impeller at various tip clearances using 3D viscous flow computations. ASME Paper 90-GT-36 (1990)Google Scholar
- 17.Goto, A.: The Effect of tip leakage flow on partload performance of a mixed-flow pump impeller. ASME Paper 91-GT-84 (1991)Google Scholar
- 18.Gülich, J.F., et al.: Influence of flow between impeller and casing on partload performance of centrifugal pumps. ASME FED. 81, 227–235 (1989)Google Scholar
- 19.Gülich, J.F., et al.: Rotor dynamic and thermal deformation tests of high-speed boiler feedpumps. EPRI Report GS-7405 (1991, July)Google Scholar
- 20.Gülich, J.F.: Bemerkungen zur Kennlinienstabilität von Kreiselpumpen. Pumpentagung Karlsruhe, B3 (1988)Google Scholar
- 21.Gülich, J.F.: Impact of 3D-Flow Phenomena on the Design of rotodynamic Pumps. IMechE. 213(C1), 59–70 (1999)Google Scholar
- 22.Gülich, J.F.: Influence of interaction of different components on hydraulic pump performance and cavitation. In: Proceedings of Symposium on Power Plant Pumps, New Orleans, 1987, EPRI CS-5857 2.75–2.96 (1988)Google Scholar
- 23.Gülich, J.F.: Untersuchungen zur sattelförmigen Kennlinien-Instabilität von Kreiselpumpen. Forsch. Ing. Wes. 61(4), 93–105 (1995)CrossRefGoogle Scholar
- 24.Hergt, P., et al.: Fluid dynamics of slurry pump impellers. In: 8th International Conference on Transport and Sedimentation of Solids, Prague, D2–1 (1995)Google Scholar
- 25.Hergt, P., Jaberg, H.: Die Abströmung von Radiallaufrädern bei Teillast und ihr Zusammenhang mit der Volllastinstabilität. KSB Techn. Ber. 26, 29–38 (1990)Google Scholar
- 26.Hergt, P., Prager, S.: Influence of different parameters on the disc friction losses of a centrifugal pump. In: Conference on Hydraulic Machinery, Budapest, pp. 172–179 (1991)Google Scholar
- 27.Hergt, P., Starke, J.: Flow patterns causing instabilities in the performance curves of centrifugal pumps with vaned diffusers. In: 2th International Pump Symposia, Houston, pp. 67–75 (1985)Google Scholar
- 28.Hergt, P.: Ergebnisse von experimentellen Untersuchungen des Förderverhaltens eines Inducers. Pumpentagung Karlsruhe, B 5–01 (1992)Google Scholar
- 29.Hunziker, E.: Einfluß der Diffusorgeometrie auf die Instabilitätsgrenze eines Radialverdichters. Dissertation, ETH Zürich (1993)Google Scholar
- 30.Inoue, M., Cumpsty, N.A.: Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers. ASME J. Eng. Gas Turbines Power. 106, 455–467 (1984)CrossRefGoogle Scholar
- 31.Kaupert, K.A.: Unsteady flow fields in a high specific speed centrifugal impeller. Dissertation, ETH Zürich (1997)Google Scholar
- 32.Lakshminarayana, B.: Fluid dynamics of inducers—a review. ASME J. Fluids Eng. 104, 411–427 (1982)CrossRefGoogle Scholar
- 33.Martin, R., et al.: Partload operation of the boiler feedpumps for the new French PWR 1400 MW nuclear plants. ImechE Paper C344/88 (1988)Google Scholar
- 34.Meschkat, S.: Experimentelle Untersuchung der Auswirkung instationärer Rotor-Stator-Wechselwirkungen auf das Betriebsverhalten einer Spiralgehäusepumpe. Dissertation, TU Darmstadt (2004)Google Scholar
- 35.Moore, J.: A wake and an Eddy in a rotating radial flow passage. ASME J. Eng. Power 95, 205–219 (1973)CrossRefGoogle Scholar
- 36.Muggli, F., Holbein, P., Dupont, P.: CFD calculation of a mixed flow pump characteristic from shut-off to maximum flow: ASME FEDSM2001-18072 (2001)Google Scholar
- 37.Pfleiderer, C.: Vorausbestimmung der Kennlinien schnellläufiger Kreiselpumpen. VDI, Düsseldorf (1938)Google Scholar
- 38.Rohkamm, H., Wulff, D., Kosyna, G., Saathoff, H., Stark, U., Gümmer, V., Swoboda, M., Goller, M.: The impact of rotor tip sweep on the three-dimensional flow in a highly-loaded single-stage low-speed axial compressor: part II—test facility and experimental results. In: 5th European Conference on Turbomachinery—Fluid Dynamics and Thermodynamics, Prague, pp. 175–185 (2003)Google Scholar
- 39.Saathoff, H., Deppe, A., Stark, U., Rohdenburg, M., Rohkamm, H., Wulff, D., Kosyna, G.: Steady and unsteady casing wall flow phenomena in a single-stage compressor at partload conditions. Int. J. Rotating Mach. 9, 327–335 (2003)CrossRefGoogle Scholar
- 40.Saathoff, H., Stark, U.: Tip clearance flow in a low-speed compressor and cascade. In: 4th European Conference on turbomachinery, Florenz, pp. 81–91 (2001)Google Scholar
- 41.Saathoff, H.: Rotor-Spaltströmungen in Axialverdichtern. Dissertation, TU Branuschweig, ZLR-Forschungsbericht 2001–2005 (2001)Google Scholar
- 42.Sano, T., et al.: Alternate blade stall and rotating stall in a vaned diffuser. JSME Int. Ser. B 45(4), 810–819 (2002)CrossRefGoogle Scholar
- 43.Schiavello, B., Sen, M.: On the prediction of the reverse flow onset at the centrifugal pump inlet. In: ASME 22nd Annual Fluids Engineering Conf, New Orleans (1980, March), Performance Prediction of Centrifugal Pumps and CompressorsGoogle Scholar
- 44.Sen, M., Breugelmans, F.: Reverse flow, prerotation and unsteady flow in centrifugal pumps. In: NEL Fluid Mechanics Silver Jubilee Conference, Glasgow (1979, November)Google Scholar
- 45.Stachnik, P.: Experimentelle Untersuchungen zur Rezirkulation am Ein- und Austritt eines radialen Kreiselpumpenlaufrades im Teillastbetrieb. Dissertation, TH Darmstadt (1991)Google Scholar
- 46.Stepanik, H., Brekke, H.: Off-design behavior of two pump-turbine model impellers. In: 3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, pp. 477–492 (1990)Google Scholar
- 47.Stoffel, B., Hergt, P.: Zur Problematik der spezifischen Saugzahl als Beurteilungsmaßstab für die Betriebssicherheit einer Kreiselpumpe. Pumpentagung Karlsruhe, B8 (1988)Google Scholar
- 48.Stoffel, B., Weiß, K.: Different types and locations of partload recirculations in centrifugal pumps found from LDV measurements. In: IAHR Symposium Valencia (1996)CrossRefGoogle Scholar
- 49.Stoffel, B., Weiß, K.: Experimental investigations on part load flow phenomena in centrifugal pumps. World Pumps 337, 46–50 (1994)Google Scholar
- 50.Stoffel, B.: Experimentelle Untersuchungen zur räumlichen und zeitlichen Struktur der Teillast-Rezirkulation bei Kreiselpumpen. Forsch. Ing. Wes. 55, 149–152 (1989)CrossRefGoogle Scholar
- 51.Tanaka, T.: An Experimental study of backflow phenomena in a high specific speed impeller pump. ASME Paper 80-FE–6Google Scholar
- 52.Toyokura, T.: Studies on the characteristics of axial-flow pumps. Bull. JSME. 4(14), 287–293 (1961)CrossRefGoogle Scholar
- 53.Ubaldi, M., Zunino, P.: Experimental investigation of the stalled flow in a centrifugal pump-turbine with vaned diffuser. ASME Paper 90-GT-216 (1990)Google Scholar
- 54.Weinerth, J.: Kennlinienverhalten und Rotorbelastung von axialen Kühlwasserpumpen unter Betriebsbedingungen. Dissertation, TU Kaiserslautern. SAM Forschungsbericht Bd 9 (2004)Google Scholar
- 55.Weiß, K.: Experimentelle Untersuchungen zur Teillastströmung bei Kreiselpumpen. Dissertation, TH Darmstadt (1995)Google Scholar
- 56.Wesche, W.: Experimentelle Untersuchungen am Leitrad einer radialen Kreiselpumpe. Dissertation, TU Braunschweig (1989)Google Scholar
- 57.Yoshinaga, Y., et al.: Study of performance improvement for high specific speed centrifugal compressors by using diffusers with half guide vanes. ASME J. Fluids Eng. 109, 259–367 (1987)Google Scholar
- 58.Van Esch, B., Cheng, L.: Unstable operation of a mixed-flow pump and the influence of tip clearance. ASME AJK2011-06016Google Scholar
- 59.Miyabe, M., et al.: Rotating stall behavior in a diffuser of a mixed-flow pump and its suppression. ASME FEDSM 2008-55132Google Scholar
- 60.Miyabe, M., et al.: On improvement of characteristic instability and internal flow in mixed-flow pumps. J. Fluid Sci. Technol. 3(6), 732–743 (2008)CrossRefGoogle Scholar
- 61.Saha, S., et al.: Suppression of performance curve instability of a mixed-flow pump by use of J-groove. ASME JFE 122, 592–597 (2000)Google Scholar
- 62.Choi, Y., et al.: Suppression of cavitation in inducers by J-grooves. ASME JFE 129, 15–22 (2007)Google Scholar
- 63.Cowan, D., Liebner, T., Bradshaw, S.: Influence of impeller suction specific speed on vibration performance. In: 29th International Pump Users Symposium, Houston, pp. 18–47 (2013)Google Scholar
- 64.Li, X., et al.: Experimental and numerical investigations of head-flow curve instability of a single-stage centrifugal pump with volute casing. Proc IMechE Part A J Power Energy (2016)Google Scholar