Advertisement

Operation of Centrifugal Pumps

  • Johann Friedrich GülichEmail author
Chapter
  • 692 Downloads

Abstract

Reliable pump performance can be achieved only if the pump is well integrated into the system. This implies the implementation of adequate controls which ensure that the pump operates in the range between the allowable minimum and maximum flow - in particular if pumps are operated in parallel. Proper procedures must be implemented for start and stop. Transient operation and unsteady phenomena which need attention include: dynamic instabilities caused by an unstable Q-H-curve, water hammer and air-drawing vortices in wet pump installations. Suction pressure transients and distorted approach flow to the pump harbor also potential for trouble. Operation in various brake and turbine modes is discussed in Chap.  12. The effects of high viscosity, free gas or large amounts of solids on the performance curves are the topic of Chap.  13.

References

  1. 1.
    Barrand, J.P., Picavet, A.: Qualitative flow visualizations during fast start-up of centrifugal pumps. In: IAHR Symposium Valencia, pp. 671–680 (1996)CrossRefGoogle Scholar
  2. 2.
    Bross, S.: Entwicklung neuer Schaufelgitter aus Profilen variabler Geometrie zum Einsatz in Leiträdern drallgeregelter Turbomaschinen. Dissertation TU Braunschweig, ZLR-Forschungsbericht 93–10 (1993)Google Scholar
  3. 3.
    Chang, K.S., Lee, D.J.: Experimental investigation of the air entrainment in the shut-down cooling system during mid-loop operation. Ann. Nucl. Energy 22(9), 611–619 (1995)CrossRefGoogle Scholar
  4. 4.
    Chaudhry, M.H.: Applied Hydraulic Transients, 2nd edn. Van Nostrand Reinhold, New York (1987)Google Scholar
  5. 5.
    De Vries, M., Simon, A.: Suctions effects on feedpump performance; a literature survey. EPRI Report CS-4204, Aug 1985Google Scholar
  6. 6.
    Dues, M.: Experimentelle Untersuchung der Interferenz zwischen Leitrad und Laufrad einer axialen Kreiselpumpenstufe. Dissertation TU Berlin (1994)Google Scholar
  7. 7.
    Fickelscher, K.: Theoretischer Vergleich der Verstellpropeller- und der Drallregelung bei Kühlwasserpumpen. VDI-Z. 108, 785–789 (1966)Google Scholar
  8. 8.
    Greitzer, E.M.: The stability of pumping systems. ASME J. Fluids Eng. 103, 193–242 (1981)CrossRefGoogle Scholar
  9. 9.
    IMechE Conference on Centrifugal pump low-flow protection (1991)Google Scholar
  10. 10.
    Jarius, M.: Untersuchung einer Axialgitterschaufel mit Höchstumlenkung durch struktur- und niederfrequente Wölbungsvariation. Dissertation TU Berlin (2000)Google Scholar
  11. 11.
    Jaeger, C.: Fluid Transients. Blackie, Glasgow (1977)Google Scholar
  12. 12.
    Knauss, J.: Wirbelbildung in Einlaufbauwerken - Luft- und Dralleintrag. DVWK Schrift 63, Paul Parey, ISBN 3-490-06397-X (1983)Google Scholar
  13. 13.
    Knauss, J. (Hrsg): Swirling flow problems at intakes. In: IAHR Hydraulic Structures Design Manual. AA Balkema, Rotterdam (1987). ISBN 90 6191 643 7Google Scholar
  14. 14.
    Melville, B.W., Ettema, R., Nakato, T.: Review of flow problems at water intake sumps. Iowa Institute of Hydraulic Research, University of Iowa. EPRI Report RP-3456-01 (1994)Google Scholar
  15. 15.
    Meschkat, S.: Experimentelle Untersuchung der Auswirkung instationärer Rotor-Stator-Wechselwirkungen auf das Betriebsverhalten einer Spiralgehäusepumpe. Diss. TU Darmstadt (2004)Google Scholar
  16. 16.
    Nakato, T., et al.: Field-tested solutions to pump vibrations. In: SHF Symposium, pp. 435–442 (1993)Google Scholar
  17. 17.
    Paterson, I.S., Adam, B.R.: Installation effects on wet pump performance. IMechE C180(77), 63–68 (1977)Google Scholar
  18. 18.
    Prosser, J.M.: The hydraulic design of pump sumps and intakes. BHRA, Bedford/CIRIA, London (1977)Google Scholar
  19. 19.
    Radke, M.: Strömungstechnische Untersuchung des Einflusses von Vorleiträdern variabler Geometrie auf das Betriebsverhalten axialer Kreiselpumpen. Fortschrittber VDI Reihe 7, 210 (1992)Google Scholar
  20. 20.
    Rosenberger, H.: Experimental determination of the rotor impacts of axial pumps in intake structures under distorted approach flow. Thesis TU Kaiserslautern, SAM Forschungsbericht Bd. 5 (2001)Google Scholar
  21. 21.
    Saalfeld, K.: Vergleichende Darstellung der Regelung von Pumpen durch Vordrall und durch Laufschaufelverstellung. KSB Techn Ber. 7, 22–31 (1963)Google Scholar
  22. 22.
    Stoll, A.: Speisewasserentgasung beim gleitendem Druck. Siemens Z. 36(8), 608–618 (1962)Google Scholar
  23. 23.
    Strub, R.A.: Abfall des Saugdruckes von Speisewasserpumpen bei starken Lastschwankungen. Techn Rundschau Sulzer. 3, 41–44 (1960)Google Scholar
  24. 24.
    Tillak, P., Hellmann, D.H., Rüth, A.: Description of surface vortices with regard to common design criteria of intake chambers. In: 2nd International Conference on Pumps and Fans, Beijing, pp. 863–874 (1995)Google Scholar
  25. 25.
    Thorley, A.R.D.: Fluid Transients in Pipeline Systems, 2nd edn. Wiley, New York (2004)Google Scholar
  26. 26.
    Weinerth, J., Rosenberger, H., Hellmann, D.H., Hausen, W.: Optimierung der Betriebsbedingungen von Wassertransportpumpen mit Hilfe von Modellversuchen. Pump Users Intl Forum Karlsruhe (2000)Google Scholar
  27. 27.
    Weinerth, J.: Kennlinienverhalten und Rotorbelastung von axialen Kühlwasserpumpen unter Betriebsbedingungen. Dissertation TU Kaiserslautern, SAM Forschungsbericht Bd. 9 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VilleneuveSwitzerland

Personalised recommendations