Skip to main content

Atomic Force Microscopy of Viruses

  • Chapter
  • First Online:
Physical Virology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1215))

Abstract

Atomic force microscopy employs a nanometric tip located at the end of a micro-cantilever to probe surface-mounted samples at nanometer resolution. Because the technique can also work in a liquid environment it offers unique possibilities to study individual viruses under conditions that mimic their natural milieu. Here, we review how AFM imaging can be used to study the surface structure of viruses including that of viruses lacking a well-defined symmetry. Beyond imaging, AFM enables the manipulation of single viruses by force spectroscopy experiments. Pulling experiments can provide information about the early events of virus–host interaction between the viral fibers and the cell membrane receptors. Pushing experiments measure the mechanical response of the viral capsid and its contents and can be used to show how virus maturation and exposure to different pH values change the mechanical response of the viruses and the interaction between the capsid and genome. Finally, we discuss how studying capsid rupture and self-healing events offers insight in virus uncoating pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic Force Microscopy

Fl:

Lateral Force

Fn:

Normal Force

FZ:

Force vs. Distance

HAdV:

human Adenovirus

HIV:

Human Immunodeficiency Virus

HOPG:

Highly Oriented Pyrolytic Graphite

JM:

Jumping Mode

nN:

nanoNewton

pN:

picoNewton

TIRFM:

Total Internal Reflection Fluorescence Microscopy

TMV:

Tobacco Mosaic Virus

References

  1. Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA (2008) Bacterial microcompartments: their properties and paradoxes. BioEssays 30:1084–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Querol-Audí J, Casañas A, Usón I, Luque D, Castón JR, Fita I, Verdaguer N (2009) The mechanism of vault opening from the high resolution structure of the N-terminal repeats of MVP. EMBO J 28:3450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC, Kirchhausen T, Walz T (2004) Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432:573

    Article  CAS  PubMed  Google Scholar 

  4. Lai Y-T, Reading E, Hura GL, Tsai K-L, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6:1065–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wimmer E, Mueller S, Tumpey TM, Taubenberger JK (2009) Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat Biotechnol 27:1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wörsdörfer B, Woycechowsky KJ, Hilvert D (2011) Directed evolution of a protein container. Science 331:589

    Article  CAS  PubMed  Google Scholar 

  7. Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2004) Principles of virology. ASM Press, Washington D.C.

    Google Scholar 

  8. Mateu MGE (2013) Structure and physics of viruses. Springer, Dordrecht

    Book  Google Scholar 

  9. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  10. Agirre J, Aloria K, Arizmendi JM, Iloro I, Elortza F, Sánchez-Eugenia R, Marti GA, Neumann E, Rey FA, Guérin DMA (2011) Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology 409:91–101

    Article  CAS  PubMed  Google Scholar 

  11. Cordova A, Deserno M, Gelbart WM, Ben-Shaul A (2003) Osmotic shock and the strength of viral capsids. Biophys J 85:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  13. Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63:862–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calder LJ, Wasilewski S, Berriman JA, Rosenthal PB (2010) Structural organization of a filamentous influenza A virus. Proc Natl Acad Sci 107:10685–10690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hinterdorfer P, van Oijen A (2009) Handbook of single-molecule biophysics. Springer, Dordrecht

    Book  Google Scholar 

  16. Muller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188

    Article  CAS  PubMed  Google Scholar 

  17. Armanious A, Aeppli M, Jacak R, Refardt D, Sigstam T, Kohn T, Sander M (2016) Viruses at solid-water interfaces: a systematic assessment of interactions driving adsorption. Environ Sci Technol 50:732–743

    Article  CAS  PubMed  Google Scholar 

  18. Moreno-Madrid F, Martin-Gonzalez N, Llauro A, Ortega-Esteban A, Hernando-Perez M, Douglas T, Schaap IAT, de Pablo PJ (2017) Atomic force microscopy of virus shells. Biochem Soc Trans 45:499–511

    Article  CAS  PubMed  Google Scholar 

  19. Ortega-Esteban A, Perez-Berna AJ, Menendez-Conejero R, Flint SJ, Martin CS, de Pablo PJ (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Snijder J, Radtke K, Anderson F, Scholtes L, Corradini E, Baines J, Heck AJR, Wuite GJL, Sodeik B, Roos WH (2017) Vertex-specific proteins pUL17 and pUL25 mechanically reinforce herpes simplex virus capsids. J Virol 91:e00123–e00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Llauro A, Luque D, Edwards E, Trus BL, Avera J, Reguera D, Douglas T, Pablo PJ, Caston JR (2016b) Cargo-shell and cargo-cargo couplings govern the mechanics of artificially loaded virus-derived cages. Nanoscale 8:9328–9336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramalho R, Rankovic S, Zhou J, Aiken C, Rousso I (2016) Analysis of the mechanical properties of wild type and hyperstable mutants of the HIV-1 capsid. Retrovirology 13:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li S, Eghiaian F, Sieben C, Herrmann A, Schaap IAT (2011) Bending and puncturing the influenza lipid envelope. Biophys J 100:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calo A, Eleta-Lopez A, Stoliar P, de Sancho D, Santos S, Verdaguer A, Bittner AM (2016) Multifrequency force microscopy of helical protein assembly on a virus. Sci Rep 6:21899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ares P, Garcia-Doval C, Llauro A, Gomez-Herrero J, van Raaij MJ, de Pablo PJ (2014) Interplay between the mechanics of bacteriophage fibers and the strength of virus-host links. Phys Rev E Stat Nonlinear Soft Matter Phys 89:052710

    Article  CAS  Google Scholar 

  26. Kuznetsov YG, Xiao CA, Sun SY, Raoult D, Rossmann M, Mcpherson A (2010) Atomic force microscopy investigation of the giant mimivirus. Virology 404:127–137

    Article  CAS  PubMed  Google Scholar 

  27. de Pablo PJ (2017) Atomic force microscopy of virus shells. Semin Cell Dev Biol 73:199–208

    Article  PubMed  CAS  Google Scholar 

  28. Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550

    Article  CAS  Google Scholar 

  29. Ohnesorge F, Binnig G (1993) True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260:1451–1456

    Article  CAS  PubMed  Google Scholar 

  30. Butt HJ, Prater CB, Hansma PK (1991) Imaging purple membranes dry and in water with the atomic force microscope. J Vac Sci Technol B 9:1193–1196

    Article  Google Scholar 

  31. Moreno-Herrero F, Colchero J, Gomez-Herrero J, Baro AM (2004) Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Phys Rev E Stat Nonlinear Soft Matter Phys 69:031915

    Article  CAS  Google Scholar 

  32. Xiao C, Kuznetsov YG, Sun SY, Hafenstein SL, Kostyuchenko VA, Chipman PR, Suzan-Monti M, Raoult D, Mcpherson A, Rossmann MG (2009) Structural studies of the giant mimivirus. PLoS Biol 7:958–966

    Article  CAS  Google Scholar 

  33. Carrasco C, Luque A, Hernando-Perez M, Miranda R, Carrascosa JL, Serena PA, de Ridder M, Raman A, Gomez-Herrero J, Schaap IAT, Reguera D, de Pablo PJ (2011) Built-in mechanical stress in viral shells. Biophys J 100:1100–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vinckier A, Heyvaert I, Dhoore A, Mckittrick T, Vanhaesendonck C, Engelborghs Y, Hellemans L (1995) Immobilizing and imaging microtubules by atomic-force microscopy. Ultramicroscopy 57:337–343

    Article  CAS  PubMed  Google Scholar 

  35. Roos WH, Bruinsma R, Wuite GJL (2010) Physical virology. Nat Phys 6:733–743

    Article  CAS  Google Scholar 

  36. de Pablo PJ, Colchero J, Gomez-Herrero J, Baro AM (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73:3300–3302

    Article  Google Scholar 

  37. Miyatani T, Horii M, Rosa A, Fujihira M, Marti O (1997) Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy. Appl Phys Lett 71:2632–2634

    Article  CAS  Google Scholar 

  38. Ortega-Esteban A, Horcas I, Hernando-Perez M, Ares P, Perez-Berna AJ, San Martin C, Carrascosa JL, de Pablo PJ, Gomez-Herrero J (2012) Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61

    Article  CAS  PubMed  Google Scholar 

  39. de Pablo PJ (2013) Atomic force microscopy of viruses. Subcell Biochem 68:247–271

    Article  PubMed  CAS  Google Scholar 

  40. Schaap IAT, Carrasco C, de Pablo PJ, Mackintosh FC, Schmidt CF (2006) Elastic response, buckling, and instability of microtubules under radial indentation. Biophys J 91:1521–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Legleiter J, Park M, Cusick B, Kowalewski T (2006) Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc Natl Acad Sci USA 103:4813–4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K (2002) Observing structure, function and assembly of single proteins by AFM. Prog Biophys Mol Biol 79:1–43

    Article  PubMed  Google Scholar 

  43. Sugimoto Y, Abe M, Hirayama S, Oyabu N, Custance O, Morita S (2005) Atom inlays performed at room temperature using atomic force microscopy. Nat Mater 4:156

    Article  CAS  PubMed  Google Scholar 

  44. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  CAS  PubMed  Google Scholar 

  45. Carrasco C, Carreira A, Schaap IAT, Serena PA, Gomez-Herrero J, Mateu MG, de Pablo PJ (2006) DNA-mediated anisotropic mechanical reinforcement of a virus. Proc Natl Acad Sci USA 103:13706–13711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carrasco C, Castellanos M, de Pablo PJ, Mateu MG (2008) Manipulation of the mechanical properties of a virus by protein engineering. Proc Natl Acad Sci USA 105:4150–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hernando-Perez M, Miranda R, Aznar M, Carrascosa JL, Schaap IAT, Reguera D, de Pablo PJ (2012) Direct measurement of phage phi29 stiffness provides evidence of internal pressure. Small 8:2366–2370

    Article  CAS  PubMed  Google Scholar 

  48. Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJL (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci USA 106:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Snijder J, Uetrecht C, Rose RJ, Sanchez-Eugenia R, Marti GA, Agirre J, Guerin DM, Wuite GJ, Heck AJ, Roos WH (2013) Probing the biophysical interplay between a viral genome and its capsid. Nat Chem 5:502–509

    Article  CAS  PubMed  Google Scholar 

  50. Zeng C, Moller-Tank S, Asokan A, Dragnea B (2017) Probing the link among genomic cargo, contact mechanics, and nanoindentation in recombinant Adeno-associated virus 2. J Phys Chem B 121:1843–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hernando-Perez M, Pascual E, Aznar M, Ionel A, Caston JR, Luque A, Carrascosa JL, Reguera D, de Pablo PJ (2014) The interplay between mechanics and stability of viral cages. Nanoscale 6:2702–2709

    Article  CAS  PubMed  Google Scholar 

  52. Roos WH, Gertsman I, May ER, Brooks CL, Johnson JE, Wuite GJL (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci USA 109:2342–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Llauro A, Schwarz B, Koliyatt R, de Pablo PJ, Douglas T (2016c) Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10:8465–8473

    Article  CAS  PubMed  Google Scholar 

  54. Purohit PK, Kondev J, Phillips R (2003) Mechanics of DNA packaging in viruses. Proc Natl Acad Sci USA 100:3173–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gonzalez-Huici V, Salas M, Hermoso JM (2004) The push-pull mechanism of bacteriophage O29 DNA injection. Mol Microbiol 52:529–540

    Article  CAS  PubMed  Google Scholar 

  56. Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage phi 29 portal motor can package DNA against a large internal force. Nature 413:748–752

    Article  CAS  PubMed  Google Scholar 

  57. Llauró A, Guerra P, Irigoyen N, Rodríguez JF, Verdaguer N, de Pablo PJ (2014) Mechanical stability and reversible fracture of vault particles. Biophys J 106:687–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Snijder J, Kononova O, Barbu IM, Uetrecht C, Rurup WF, Burnley RJ, Koay MS, Cornelissen JJ, Roos WH, Barsegov V, Wuite GJ, Heck AJ (2016) Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin. Biomacromolecules 17:2522–2529

    Article  CAS  PubMed  Google Scholar 

  59. Ortega-Esteban A, Condezo GN, Perez-Berna AJ, Chillon M, Flint SJ, Reguera D, San Martin C, de Pablo PJ (2015b) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9:10826–10833

    Article  CAS  PubMed  Google Scholar 

  60. Snijder J, Ivanovska IL, Baclayon M, Roos WH, Wuite GJ (2012) Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43:1343–1350

    Article  CAS  PubMed  Google Scholar 

  61. Klug WS, Bruinsma RF, Michel JP, Knobler CM, Ivanovska IL, Schmidt CF, Wuite GJL (2006) Failure of viral shells. Phys Rev Lett 97:228101

    Article  PubMed  CAS  Google Scholar 

  62. Landau LD, Lifshizt E (1986) Theory of elasticity. Pergamon, London

    Google Scholar 

  63. Falvo MR, Washburn S, Superfine R, Finch M, Brooks FP, Chi V, Taylor RM (1997) Manipulation of individual viruses: friction and mechanical properties. Biophys J 72:1396–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ivanovska IL, de Pablo PJ, Ibarra B, Sgalari G, Mackintosh FC, Carrascosa JL, Schmidt CF, Wuite GJL (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci USA 101:7600–7605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. San Martín C (2012) Latest insights on adenovirus structure and assembly. Viruses 4:847–877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ivanovska IL, Miranda R, Carrascosa JL, Wuite GJL, Schmidt CF (2011) Discrete fracture patterns of virus shells reveal mechanical building blocks. Proc Natl Acad Sci USA 108:12611–12616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Llauro A, Guerra P, Irigoyen N, Rodriguez JF, Verdaguer N, de Pablo PJ (2014) Mechanical stability and reversible fracture of vault particles. Biophys J 106:687–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Llauro A, Coppari E, Imperatori F, Bizzarri AR, Caston JR, Santi L, Cannistraro S, de Pablo PJ (2015) Calcium ions modulate the mechanics of tomato bushy stunt virus. Biophys J 109:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Valbuena A, Mateu MG (2015) Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating. Nanoscale 7:14953–14964

    Article  CAS  PubMed  Google Scholar 

  71. Voros Z, Csik G, Herenyi L, Kellermayer MSZ (2017) Stepwise reversible nanomechanical buckling in a viral capsid. Nanoscale 9:1136–1143

    Article  CAS  PubMed  Google Scholar 

  72. Uchida M, Douglas T (2013) Biophysical chemistry: unravelling capsid transformations. Nat Chem 5:444–445

    Article  CAS  PubMed  Google Scholar 

  73. Tang L, Gilcrease EB, Casjens SR, Johnson JE (2006) Highly discriminatory binding of capsid-cementing proteins in bacteriophage L. Structure 14:837–845

    Article  CAS  PubMed  Google Scholar 

  74. Carrillo PJ, Medrano M, Valbuena A, Rodriguez-Huete A, Castellanos M, Perez R, Mateu MG (2017) Amino acid side chains buried along intersubunit interfaces in a viral capsid preserve low mechanical stiffness associated with virus infectivity. ACS Nano 11:2194–2208

    Article  CAS  PubMed  Google Scholar 

  75. Castellanos M, Perez R, Carrasco C, Hernando-Perez M, Gomez-Herrero J, de Pablo PJ, Mateu MG (2012) Mechanical elasticity as a physical signature of conformational dynamics in a virus particle. Proc Natl Acad Sci USA 109:12028–12033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of Adenovirus-2 during entry into cells. Cell 75:477–486

    Article  CAS  PubMed  Google Scholar 

  77. Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hernando-Pérez M, Lambert S, Nakatani-Webster E, Catalano CE, de Pablo PJ (2014) Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 5:4520

    Article  PubMed  CAS  Google Scholar 

  79. Medina E, Nakatani E, Kruse S, Catalano CE (2012) Thermodynamic characterization of viral procapsid expansion into a functional capsid shell. J Mol Biol 418:167–180

    Article  CAS  PubMed  Google Scholar 

  80. Valbuena A, Mateu MG (2017) Kinetics of surface-driven self-assembly and fatigue-induced disassembly of a virus-based nanocoating. Biophys J 112:663–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mertens J, Casado S, Mata CP, Hernando-Perez M, de Pablo PJ, Carrascosa JL, Caston JR (2015) A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability. Sci Rep 5:13486

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ortega-Esteban A, Bodensiek K, San Martin C, Suomalainen M, Greber UF, de Pablo PJ, Schaap IAT (2015a) Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 9:10571–10579

    Article  CAS  PubMed  Google Scholar 

  83. Gaiduk A, Kuhnemuth R, Antonik M, Seidel CA (2005) Optical characteristics of atomic force microscopy tips for single-molecule fluorescence applications. ChemPhysChem 6:976–983

    Article  CAS  PubMed  Google Scholar 

  84. Fontana J, Cardone G, Heymann JB, Winkler DC, Steven AC (2012) Structural changes in influenza virus at low pH characterized by cryo-electron tomography. J Virol 86:2919–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Suomalainen M, Greber UF (2013) Uncoating of non-enveloped viruses. Curr Opin Virol 3:27–33

    Article  CAS  PubMed  Google Scholar 

  86. Wetz K, Kucinski T (1991) Influence of different ionic and pH environments on structural alterations of poliovirus and their possible relation to virus uncoating. J Gen Virol 72:2541–2544

    Article  CAS  PubMed  Google Scholar 

  87. Li S, Sieben C, Ludwig K, Höfer CT, Chiantia S, Herrmann A, Eghiaian F, Schaap IAT (2014) pH-controlled two-step uncoating of influenza virus. Biophys J 106:1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Llauro A, Guerra P, Kant R, Bothner B, Verdaguer N, de Pablo PJ (2016a) Decrease in pH destabilizes individual vault nanocages by weakening the inter-protein lateral interaction. Sci Rep 6:34143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M, White JM, Steven AC (2006) Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci 103:19123–19127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schaap IAT, Eghiaian F, Des Georges A, Veigel C (2012) Effect of envelope proteins on the mechanical properties of influenza virus. J Biol Chem 287:41078–41088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilts BD, Schaap IA, Schmidt CF (2015) Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts. Biophys J 108:2541–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goldsmith LE, Yu M, Rome LH, Monbouquette HG (2007) Vault nanocapsule dissociation into halves triggered at low pH. Biochemistry 46:2865–2875

    Article  CAS  PubMed  Google Scholar 

  93. Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M, Roska B, Muller DJ (2017) Nanomechanical mapping of first binding steps of a virus to animal cells. Nat Nanotechnol 12:177–183

    Article  CAS  PubMed  Google Scholar 

  94. Gladnikoff M, Rousso I (2008) Directly monitoring individual retrovirus budding events using atomic force microscopy. Biophys J 94:320–326

    Article  CAS  PubMed  Google Scholar 

  95. Sieben C, Kappel C, Zhu R, Wozniak A, Rankl C, Hinterdorfer P, Grubmüller H, Herrmann A (2012) Influenza virus binds its host cell using multiple dynamic interactions. Proc Natl Acad Sci USA 109:13626–13631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kuznetsov YG, Datta S, Kothari NH, Greenwood A, Fan H, Mcpherson A (2002) Atomic force microscopy investigation of fibroblasts infected with wild-type and Mutant Murine Leukemia Virus (MuLV). Biophys J 83:3665–3674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gladnikoff M, Shimoni E, Gov NS, Rousso I (2009) Retroviral assembly and budding occur through an actin-driven mechanism. Biophys J 97:2419–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cartagena A, Hernando-Perez M, Carrascosa JL, de Pablo PJ, Raman A (2013) Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy. Nanoscale 5:4729–4736

    Article  CAS  PubMed  Google Scholar 

  99. Ando T, Kodera N, Naito Y, Kinoshita T, Furuta K, Toyoshima YY (2003) A high-speed atomic force microscope for studying biological macromolecules in action. ChemPhysChem 4:1196–1202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge our students, former students, collaborators, and projects FIS2014-59562-R, FIS2015-71108-REDT, FIS2017-89549-R. Fundación BBVA and “María de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. de Pablo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Pablo, P.J., Schaap, I.A.T. (2019). Atomic Force Microscopy of Viruses. In: Greber, U. (eds) Physical Virology. Advances in Experimental Medicine and Biology, vol 1215. Springer, Cham. https://doi.org/10.1007/978-3-030-14741-9_8

Download citation

Publish with us

Policies and ethics