Skip to main content

Microorganisms for Cellulase Production: Availability, Diversity, and Efficiency

  • Chapter
  • First Online:
Approaches to Enhance Industrial Production of Fungal Cellulases

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The great abundance and availability of lignocellulosic material as alternative substrates for industrial processes opens up a vast field of potential for the production of value-added compounds. For example, the discovery of the relationship between degradation of lignocellulosic biomass and the production of new-generation biofuels has made the search for more cost-effective and sustainable processes. In this sense, cellulases appear as promising process alternatives, considering that they are able of cleaving linkages that form the polysaccharide chain of cellulose, releasing compounds such as glucose, cellobiose, and oligosaccharides, among others. In this approach, the main goal of this chapter is to offer an in-depth outline on the identification of new strains capable of producing cellulases and overview the fermentative parameters, process optimization, and genetic engineering for process development, highlighting how microorganisms can be efficient tools for the production of cellulases with realistic potential of industrial applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S, Chaudhary A (2012) Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Braz Arch Biol Technol 55:497–503

    Article  CAS  Google Scholar 

  • Amaeze NJ, Okoliegbe IN, Francis ME (2015) Cellulase production by Aspergillus niger and Saccharomyces cerevisiae using fruit wastes as substrates. Int J Appl Microbiol Biotechnol Res 3:36–44

    Google Scholar 

  • Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag 32:1341–1346. https://doi.org/10.1016/j.wasman.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  • Baz AE, Shetaia Y, Eldin H, ElMekawy A (2016) Optimization of cellulase production by Trichoderma viride using response surface methodology. Current Biotechnol 5. https://doi.org/10.2174/2211550105666160115213402

    Article  CAS  Google Scholar 

  • Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol 86:656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090

    Article  CAS  PubMed  Google Scholar 

  • Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases – diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15:197–210

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal MN, Hu H, Wang W, Zhang X (2018) Metabolic engineering and enzyme-mediated processing: a biotechnological venture towards biofuel production – a review. Renew Sustain Energy Rev 82:436–447. https://doi.org/10.1016/j.rser.2017.09.070

    Article  CAS  Google Scholar 

  • Callow NV, Ray CS, Kelbly MA, Ju LK (2016) Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzym Microb Technol 82:8–14. https://doi.org/10.1016/j.enzmictec.2015.08.012

    Article  CAS  Google Scholar 

  • Chander R, Deswal D, Sharma S, Bhattacharya A, Kumar K, Kaur A et al (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev 55:249–272. https://doi.org/10.1016/j.rser.2015.10.132

    Article  CAS  Google Scholar 

  • Cong B, Wang N, Liu S, Liu F, Yin X, Shen J (2017) Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. BMC Microbiol 17:129

    Article  Google Scholar 

  • Cunha FM, Esperança MN, Zangirolami TC, Badino AC, Farinas CS (2012) Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol 112:270–274. https://doi.org/10.1016/j.biortech.2012.02.082

    Article  CAS  PubMed  Google Scholar 

  • De Sousa KA, da Faheina Junior GS, de Azevedo DCS, Pinto GAS (2018) Optimization of cellulase production by Trichoderma strains using crude glycerol as a primary carbon source with a 24 full factorial design. Waste Biomass Valoriz 9(3):357–367. https://doi.org/10.1007/s12649-016-9806-8

    Article  Google Scholar 

  • Delabona P d S, Lima DJ, Robl D, Rabelo SC, Farinas CS, da Cruz Pradella JG (2016) Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol 43:617–626. https://doi.org/10.1007/s10295-016-1744-8

    Article  CAS  Google Scholar 

  • Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crop Prod 34:1160–1167. https://doi.org/10.1016/j.indcrop.2011.04.001

    Article  CAS  Google Scholar 

  • Do Vale LHF, Filho EXF, Miller RNG, Ricart CAO, De Sousa MV (2014) Cellulase systems in Trichoderma: an overview. Biotechnol Biol Trichoderma. https://doi.org/10.1016/B978-0-444-59576-8.00016-3

    Chapter  Google Scholar 

  • Dutta SG, Shaik AB, Ganesh Kumar C, Kamal A (2017) Statistical optimization of production conditions of β-glucosidase from Bacillus stratosphericus strain SG9. 3 Biotech 7. https://doi.org/10.1007/s13205-017-0866-7

  • Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M et al (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:1–17. https://doi.org/10.1186/s13068-017-0717-0

    Article  CAS  Google Scholar 

  • Fang H, Xia L (2015) Cellulase production by recombinant Trichoderma reesei and its application in enzymatic hydrolysis of agricultural residues. Fuel 143:211–216. https://doi.org/10.1016/j.fuel.2014.11.056

    Article  CAS  Google Scholar 

  • Ferreira NL, Margeot A, Blanquet S, Berrin JG (2014) Use of cellulases from Trichoderma reesei in the twenty-first century—part I: current industrial uses and future applications in the production of second ethanol generation. Biotechnol Biol Trichoderma 1. https://doi.org/10.1016/B978-0-444-59576-8.00017-5

    Chapter  Google Scholar 

  • Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sust Energ Rev 73:205–214

    Article  CAS  Google Scholar 

  • Giese EC, Dussán KJ, Pierozzi M, Chandel AK, Pagnocca FC, Silva SS (2017) Cellulase production by Trichosporon laibachii. Orbital Electron J Chem 9:271–278. https://doi.org/10.17807/orbital.v9i4.1024

    Article  CAS  Google Scholar 

  • Gupta M, Sharma M, Singh S, Gupta P, Bajaj BK (2015) Enhanced production of cellulase from Bacillus licheniformis k-3 with potential for saccharification of rice straw. Energy Technol 3:216–224. https://doi.org/10.1002/ente.201402137

    Article  CAS  Google Scholar 

  • Gutiérrez-Correa M, Villena GK (2012) Batch and repeated batch cellulase production by mixed cultures of Trichoderma reesei and Aspergillus niger or Aspergillus phoenicis. J Microbiol Biotechnol Res 2:929–935

    Google Scholar 

  • Han X, Song W, Liu G, Li Z, Yang P, Qu Y (2017) Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresour Technol 227:155–163. https://doi.org/10.1016/j.biortech.2016.11.079

    Article  CAS  PubMed  Google Scholar 

  • Hareesh ES, Faisal PA, Benjamin S (2016) Optimization of parameters for the production of cellulase from Achromobacter xylosoxidans BSS4 by solid-state fermentation. Electron J Biol 12:443–448

    Google Scholar 

  • Heinz KGH, Zanoni PRS, Oliveira RR, Medina-Silva R, Simão TLL, Trindade FJ, Pereira LM, Tavares LBB, Giongo A (2017) Recycled paper sludge microbial community as a potential source of cellulase and xylanase enzymes. Waste Biomass Valor 8:1907–1917

    Article  CAS  Google Scholar 

  • Huang SW, Sheng P, Zhang HY (2012) Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int J Mol Sci 13:2563–2577

    Article  CAS  Google Scholar 

  • Huang S, Deng G, Yang Y, Wu Z, Wu L (2015) Optimization of endoglucanase production from a novel bacterial isolate, Arthrobacter sp. HPG166 and characterization of its properties. Braz Arch Biol Technol 58:692–701

    Article  CAS  Google Scholar 

  • Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS (2017) Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol 15:77–85

    Article  Google Scholar 

  • Idris ASO, Pandey A, Rao SS, Sukumaran RK (2017) Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresour Technol 242:265–271. https://doi.org/10.1016/j.biortech.2017.03.092

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Anwar Z, Irshad M, Javid A, Hussain A, Ali S (2017) Optimization of cellulase production from a novel strain of Aspergillus Tubingensis IMMIS2 through response surface methodology. Biocatal Agric Biotechnol 12:191–198. https://doi.org/10.1016/j.bcab.2017.10.005

    Article  Google Scholar 

  • Irfan M, Mushtaq Q, Tabssum F, Shakir HA, Qazi JI (2017) Carboxymethyl cellulase production optimization from newly isolated thermophilic Bacillus subtilis K-18 for saccharification using response surface methodology. AMB Express 7. https://doi.org/10.1186/s13568-017-0331-3

  • Jafari N, Jafarizadeh-Malmiri H, Hamzeh-Mivehroud M, Adibpour M (2017) Optimization of UV irradiation mutation conditions for cellulase production by mutant fungal strains of Aspergillus Niger through solid state fermentation. Green Process Synth 6:333–340. https://doi.org/10.1515/gps-2016-0145

    Article  CAS  Google Scholar 

  • Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production-a literature review. J Clean Prod 42:228–240. https://doi.org/10.1016/j.jclepro.2012.11.005

    Article  CAS  Google Scholar 

  • Jiang Y, Xin F, Lu J, Dong W, Zhang W, Zhang M et al (2017) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Elsevier Ltd, New York. https://doi.org/10.1016/j.biortech.2017.05.142

    Book  Google Scholar 

  • Joynson R, Pritchard L, Osemwekha E, Ferry N (2017) Metagenomic analysis of the gut microbiome of the common black slug Arion ater in search of novel lignocellulose degrading enzymes. Front Microbiol 8:2181

    Article  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203. https://doi.org/10.1016/j.rser.2014.01.077

    Article  CAS  Google Scholar 

  • Kadarmoidheen M, Saranraj P, Stella D (2012) Effects of cellulolytic fungi on the degradation of cellulosic agricultural wastes. Int J Appl Microbiol Sci 1:13–23

    Google Scholar 

  • Kojima M, Okamoto K, Yanase H (2013) Direct ethanol production from cellulosic materials by Zymobacter palmae carrying Cellulomonas endoglucanase and Ruminococcus β-glucosidase genes. Appl Microbiol Biotechnol 97:5137–5147

    Article  CAS  Google Scholar 

  • Korany AH, Ali AE, Essam TM, Megahed SA (2017) Optimization of cellulase production by Halobacillus sp. QLS 31 isolated from Lake Qarun, Egypt. Appl Biochem Biotechnol 183:189–199. https://doi.org/10.1007/s12010-017-2438-z

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 2011:ID280696

    Article  Google Scholar 

  • Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A et al (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev 55:249–272. https://doi.org/10.1016/j.rser.2015.10.132

    Article  CAS  Google Scholar 

  • Ladeira SA, Cruz E, Delatorre AB, Barbosa JB, Martins MLL (2015) Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electron J Biotechnol 18:110–115. https://doi.org/10.1016/j.ejbt.2014.12.008

    Article  CAS  Google Scholar 

  • Li C, Yang Z, He Can Zhang R, Zhang D, Chen S, Ma L (2013) Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol 168:470–477. https://doi.org/10.1016/j.jbiotec.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  • Liang Y-L, Zhang Z, Wu M, Wu Y, Feng J-X (2014) Isolation, Screening, and Identification of Cellulolytic Bacteria from Natural Reserves in the Subtropical Region of China and Optimization of Cellulase Production by Paenibacillus terrae ME27-1. Biomed Res Int 2014:1–13. https://doi.org/10.1155/2014/512497

    Article  Google Scholar 

  • Libardi N, Soccol CR, Góes-Neto A, de OJ, Vandenberghe LP de S (2017) Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochem 57:190–199. https://doi.org/10.1016/j.procbio.2017.03.006

    Article  CAS  Google Scholar 

  • Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z et al (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegrad 65:717–725. https://doi.org/10.1016/j.ibiod.2011.04.005

    Article  CAS  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulose-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  CAS  Google Scholar 

  • Mandal M, Ghosh U (2018) Value addition to horticultural solid waste by applying it in biosynthesis of industrially important enzyme: cellulase. In: Ghosh SK (ed) Utilization and management of bioresources. Springer Nature, Singapore, pp 279–289. https://doi.org/10.1007/978-981-10-5349-8

    Chapter  Google Scholar 

  • Menasria T, Aguilera M, Hocine H, Benammar L, Ayachi A, Bachir AS, Dekak A, Monteoliva-Sánchez M (2018) Diversity and bioprospecting of extremely halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes. Microbiol Res 207:289–298

    Article  CAS  Google Scholar 

  • Mohamed AH, Youseif SH, El-Mageed FHA, Heikal NZ, Moussa TAA, Saleh SA (2017) Production of cellulase, exoglucanase and xylanase by different microorganisms cultivated on agricultural wastes. Res J Pharm Biol Chem Sci 8:435–452

    CAS  Google Scholar 

  • Olsen HS, Falholt P (1998) The role of enzymes in modern detergency. J Surfactant Deterg 1:555–567. https://doi.org/10.1007/s11743-998-0058-7

    Article  CAS  Google Scholar 

  • Panchapakesan A, Shankar N (2016) Fungal cellulases: an overview. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier B.V., Amsterdam, pp 9–18

    Chapter  Google Scholar 

  • Pang J, Liu Z-Y, Hao M, Zhang Y-F, Qi Q-S (2017) An isolated cellulolytic Escherichia coli from bovine rumen produces ethanol and hydrogen from corn straw. Biotechnol Biofuels 10(165):165

    Article  Google Scholar 

  • Pennacchio A, Ventorino V, Cimini D, Pepe O, Schiraldi C, Inverso M, Faraco V (2018) Isolation of new cellulase and xylanase producing strains and application to lignocellulosic biomasses hydrolysis and succinic acid production. Bioresour Technol 259:325–333

    Article  CAS  Google Scholar 

  • Russell JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67:183–197

    Article  CAS  Google Scholar 

  • Sangwan P, Mor V, Dharnkhar R, Sukhani S (2015) Optimization of process paramerts for cellulase and xylanase production using rice husk. Int J Pharm Biol Sci 6:755–762

    CAS  Google Scholar 

  • Sarrouh B (2012) Up-to-date insight on industrial enzymes applications and global market. J Bioprocess Biotech s1. https://doi.org/10.4172/2155-9821.S4-002

  • Sethi S, Gupta S (2014) Optimization of cultural parameters for cellulase enzyme production from fungi. Biolife Int Q J Biol Life Sci 2:989–996

    Google Scholar 

  • Shajahan S, Moorthy IG, Sivakumar N, Selvakumar G (2017) Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J King Saud Univ Sci 29:302–310. https://doi.org/10.1016/j.jksus.2016.08.001

    Article  Google Scholar 

  • Sheng P, Huang SW, Wang Q, Wang AL, Zhang HY (2012) Isolation, screening and optimization of the fermentation conditions of high cellulolytic bacteria from the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Appl Biochem Biotechnol 167:270–284

    Article  CAS  Google Scholar 

  • Silva AC, Rachid CTCC, Jesus HE, Rosado AS, Peixoto RS (2017) Predicting the biotechnological potential of bacteria isolated from Antarctic soils, including the rhizosphere of vascular plants. Polar Biol 40:1393–1407

    Article  Google Scholar 

  • Singh S, Singh VK, Aamir M, Dubey MK, Patel JS, Upadhyay RS, Gupta VK (2016) Cellulase in pulp and paper industry. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering, 1st edn. Elsevier B.V., Amsterdam, pp 153–163

    Google Scholar 

  • Singhania RR, Adsul M, Pandey A, Patel AK (2016) Cellulases. In: Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Elsevier, Amsterdam, pp 73–101. https://doi.org/10.1016/B978-0-444-63662-1.00004-X

    Chapter  Google Scholar 

  • Sirajunnisa AR, Vijayagopal V, Sivaprakash B, Viruthagiri T, Surendhiran D (2016) Optimization, kinetics and antioxidant activity of exopolysaccharide produced from rhizosphere isolate, Pseudomonas fluorescens CrN6. Carbohydr Polym 135:35–43. https://doi.org/10.1016/j.carbpol.2015.08.080

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Rawat R, Oberoi H (2014) Application of thermostable cellulase in bioethanol production from lignocellulosic waste. In: Kumar S, Sarma A, Tyagi S, Yadav Y (eds) Recent advances in bioenergy research. Sardar Swaran Singh National Institute of Renewable Energy, Kapurthala, pp 121–129

    Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Gupta VK, Molina G (2017) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sust Energ Rev:0–1 v.82. https://doi.org/10.1016/j.rser.2017.08.074

    Article  CAS  Google Scholar 

  • Teoh YP, Don MM, Fadzilah K (2017) Optimization of cellulase production by Pycnoporus sanguineus in 5 L stirred tank bioreactor and enhanced fermentation by employing external loop. Chiang Mai J Sci 44:774–787

    CAS  Google Scholar 

  • Tolan JS, Foody B (1999) Cellulase from Submerged Fermentation. Adv Biochem Eng Biotechnol 65:41–67. https://doi.org/10.1007/3-540-49194-5_3

    Article  CAS  Google Scholar 

  • Toogood HS, Scrutton NS (2018) Retooling microorganisms for the fermentative production of alcohols. Curr Opin Biotechnol 50:1–10. https://doi.org/10.1016/j.copbio.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14:259–263

    Article  CAS  Google Scholar 

  • Yamamoto K, Tamaru Y (2016) Important roles of the cellulosome on degradation of plant biomass. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering, 1st edn. Elsevier B.V., pp 3–8

    Google Scholar 

  • Yoon LW, Ang TN, Ngoh GC, Chua ASM (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy 67:319–338. https://doi.org/10.1016/j.biombioe.2014.05.013

    Article  CAS  Google Scholar 

  • Yuan SF, Wu TH, Lee HL, Hsieh HY, Lin WL, Yang B, Chang C-K, Li Q, Gao J, Huang C-H, Ho M-C, Guo R-T, Liang P-H (2015) Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. J Biol Chem 290:5739–5748

    Article  CAS  Google Scholar 

  • Zeng R, Yin X-Y, Ruan T, Hu Q, Hou Y-L, Zuo Z-Y, Huang H, Yang Z-H (2016) A novel cellulase produced by a newly isolated Trichoderma virens. Bioengineering 3:13

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico – Process number: 460897/2014-4), Fapemig (Fundação de Amparo à Pesquisa do Estado de Minas Gerais – Process number: CAG-APQ-01056-17), and ICT/UFVJM.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Barcelos, M.C.S., Carvalho e Silva, C.H., Ramos, C.L., Molina, G. (2019). Microorganisms for Cellulase Production: Availability, Diversity, and Efficiency. In: Srivastava, M., Srivastava, N., Ramteke, P., Mishra, P. (eds) Approaches to Enhance Industrial Production of Fungal Cellulases . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14726-6_4

Download citation

Publish with us

Policies and ethics