Skip to main content

An Insight into Fungal Cellulases and Their Industrial Applications

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Cellulases are glycoside hydrolases that catalyze the hydrolysis of crystalline and amorphous cellulose to its oligomers and monomers. Cellulases from microbial sources have received a lot of attention because of their industrial applications, and these enzymes are mainly used in the energy sector. This review provides a summary of fungal cellulases, including the microorganisms used to produce cellulases, the efficient use of industrial residues as substrates for the production of cellulases, and their applications in various industrial sectors. Fungal cellulases can play a vital role in the biofuels sector when its potential is exploited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhyaru DN, Bhatt NS, Modi HA (2015) Optimization of upstream and downstream process parameters for cellulases-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Bioresour Bioprocess 2(1):3

    Article  Google Scholar 

  • Adsul MG, Bastawde KB, Varma AJ, Gokhale DV (2007) Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulases production. Bioresour Technol 98(7):1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Adsul MG, Terwadkar AP, Varma AJ, Gokhale D (2009) Cellulases from Penicillium janthinellum mutants: solid-state production and their stability in ionic liquids. Bioresources 4(4):1670–1681

    CAS  Google Scholar 

  • Ahmed S, Bashir A, Saleem H, Saadia M, Jamil A (2009) Production and purification of cellulose-degrading enzymes from a filamentous fungus Trichoderma harzianum. Pak J Bot 41(3):1411–1419

    CAS  Google Scholar 

  • Amir IJAZ, Anwar Z, Zafar Y, Iqbal H, Aish M, Muhammad I, Sajid M (2011) Optimization of cellulases enzyme production from corn cobs using Alternaria alternata by solid state fermentation. J Cell Mol Biol 9(2):51–56

    Google Scholar 

  • Anand T, Bhaskaran R, Karthikeyan TG, Rajesh M, Senthilraja G (2008) Production of cell wall degrading enzymes and toxins by Colletotrichum capsici and Alternaria alternata causing fruit rot of chillies. J Plant Protect Res 48(4):437–451

    Article  CAS  Google Scholar 

  • Anish R, Rahman MS, Rao M (2007) Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng 96(1):48–56

    Article  CAS  PubMed  Google Scholar 

  • Anita S, Namita S, Bishnoi NR (2009) Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int J Env Sci Eng 1(1):23–26

    Google Scholar 

  • Baba Y, Shimonaka A, Koga J, Kubota H, Kono T (2005) Alternative splicing produces two endoglucanases with one or two carbohydrate-binding modules in Mucor circinelloides. J Bacteriol 187(9):3045–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba Y, Sumitani JI, Tani S, Kawaguchi T (2015) Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulases system. AMB Express 5(1):3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldrian P, Gabriel J (2003) Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett 220(2):235–240

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848

    Article  CAS  Google Scholar 

  • Belghith H, Chaabouni SE, Gargouri A (2001a) Stabilization of Penicillium occitanis cellulases by spray drying in presence of Maltodextrin. Enzym Microb Technol 28(2–3):253–258

    Article  CAS  Google Scholar 

  • Belghith H, Ellouz-Chaabouni S, Gargouri A (2001b) Biostoning of denims by Penicillium occitanis (Pol6) cellulases. J Biotechnol 89(2–3):257–262

    Article  CAS  PubMed  Google Scholar 

  • Bhatti HN, Batool S, Afzal N (2013) Production and characterization of a novel (beta)-glucosidase from Fusarium solani. Int J Agric Biol 15(1):140–144

    Google Scholar 

  • Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69(5):486–494

    Article  CAS  PubMed  Google Scholar 

  • Boisset C, Pétrequin C, Chanzy H, Henrissat B, Schülein M (2001) Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol Bioeng 72(3):339–345

    Article  CAS  PubMed  Google Scholar 

  • Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugarcane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103(6):2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Camassola M, Dillon AJ (2009) Biological pretreatment of sugarcane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crop Prod 29(2–3):642–647

    Article  CAS  Google Scholar 

  • Camassola M, Dillon AJ (2010) Cellulases and xylanases production by Penicillium echinulatum grown on sugarcane bagasse in solid-state fermentation. Appl Biochem Biotechnol 162(7):1889–1900

    Article  CAS  PubMed  Google Scholar 

  • Camassola M, De Bittencourt LR, Shenem NT, Andreaus J, Dillon AJP (2004) Characterization of the cellulases complex of Penicillium echinulatum. Biocatal Biotransformation 22(5–6):391–396

    Article  CAS  Google Scholar 

  • Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71(5):2412–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coral G, Arikan B, Ünaldi MN, Güvenmez H (2002) Some properties of crude carboxymethyl cellulases of Aspergillus niger Z10 wild-type strain. Turk J Biol 26(4):209–213

    CAS  Google Scholar 

  • da Silva Delabona P, Farinas CS, da Silva MR, Azzoni SF, da Cruz Pradella JG (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugarcane bagasse for on-site cellulases production. Bioresour Technol 107:517–521

    Article  CAS  Google Scholar 

  • de Castro AM, de Carvalho MLDA, Leite SGF, Pereira N (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Davies GJ, Brzozowski AM, Dauter M, Varrot A, Schülein M (2000) Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 Å resolution. Biochem J 348(1):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker C, Visser J, Schreier P (2001) β-glucosidase multiplicity from Aspergillus tubingensis CBS 643.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl Microbiol Biotechnol 55(2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87–94

    Article  CAS  Google Scholar 

  • Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29(4):741–764

    Article  CAS  PubMed  Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulases production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102(10):6065–6072

    Article  CAS  PubMed  Google Scholar 

  • Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269

    Article  CAS  PubMed  Google Scholar 

  • Dillon AJP, Bettio M, Pozzan FG, Andrighetti T, Camassola M (2011) A new Penicillium echinulatum strain with faster cellulases secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. J Appl Microbiol 111(1):48–53

    Article  CAS  PubMed  Google Scholar 

  • Dimarogona M, Topakas E, Olsson L, Christakopoulos P (2012) Lignin boosts the cellulases performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol 110:480–487

    Article  CAS  PubMed  Google Scholar 

  • Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crop Prod 29(2–3):404–411

    Article  CAS  Google Scholar 

  • Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35(4):275–282

    Article  CAS  PubMed  Google Scholar 

  • e Silva LAD, Lopes FC, Silveira ST, Brandelli A (2009) Production of cellulolytic enzymes by Aspergillus phoenicis in grape waste using response surface methodology. Appl Biochem Biotechnol 152(2):295–305

    Article  CAS  Google Scholar 

  • El-Katatny M, Gudelj M, Robra KH, Elnaghy M, Gübitz G (2001) Characterization of a chitinase and an endo-β-1, 3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56(1–2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Eshel D, Lichter A, Dinoor A, Prusky D (2002) Characterization of Alternaria alternata glucanase genes expressed during infection of resistant and susceptible persimmon fruits. Mol Plant Pathol 3(5):347–358

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99(16):7623–7629

    Article  CAS  PubMed  Google Scholar 

  • Gomathi D, Muthulakshmi C, Kumar DG, Ravikumar G, Kalaiselvi M, Uma C (2012) Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulases. Asian Pac J Trop Biomed 2(1):S67–S73

    Article  Google Scholar 

  • Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68(1):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haakana H, Miettinen-Oinonen A, Joutsjoki V, Mäntylä A, Suominen P, Vehmaanperä J (2004) Cloning of cellulases genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzym Microb Technol 34(2):159–167

    Article  CAS  Google Scholar 

  • Herculano PN, Porto TS, Moreira KA, Pinto GA, Souza-Motta CM, Porto ALF (2011) Cellulases production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid-state fermentation. Appl Biochem Biotechnol 165(3–4):1057–1067

    Article  CAS  PubMed  Google Scholar 

  • Herculano PN, Porto TS, Maciel MH, Moreira KA, Souza-Motta CM, Porto AL (2012) Partitioning and purification of the cellulolytic complex produced by Aspergillus japonicus URM5620 using PEG–citrate in an aqueous two-phase system. Fluid Phase Equilib 335:8–13

    Article  CAS  Google Scholar 

  • Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for isobutanol production from cellulose. Appl Environ Microbiol 77:2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Highley TL, Wolter KE, Evans FJ (2007) Polysaccharide-degrading complex produced in wood and in liquid media by the brown-rot fungus Poria placenta. Wood Fiber Sci 13(4):265–274

    Google Scholar 

  • Hirvonen M, Papageorgiou AC (2003) Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: mechanistic implications based on the free and cellobiose-bound forms. J Mol Biol 329(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Hu HL, Van den Brink J, Gruben BS, Wösten HAB, Gu JD, De Vries RP (2011) Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int Biodeter Biodegr 65(1):248–252

    Article  CAS  Google Scholar 

  • Hui L, Wan C, Hai-Tao D, Xue-Jiao C, Qi-Fa Z, Yu-Hua Z (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101(19):7556–7562

    Article  CAS  Google Scholar 

  • Immanuel G, Bhagavath CMA, Raj PI, Esakkiraj P, Palavesam A (2007) Production and partial purification of cellulases by Aspergillus niger and A. fumigatus fermented in coir waste and sawdust. Internet J Microbiol 3(1):1–20

    Google Scholar 

  • Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulases from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100(21):5155–5161

    Article  CAS  PubMed  Google Scholar 

  • Jeya M, Moon HJ, Kim SH, Lee JK (2010b) Conversion of woody biomass into fermentable sugars by cellulases from Agaricus arvensis. Bioresour Technol 101(22):8742–8749

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzym Microb Technol 38(3–4):381–390

    Article  CAS  Google Scholar 

  • Jørgensen H, Eriksson T, Börjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzym Microb Technol 32(7):851–861

    Article  CAS  Google Scholar 

  • Jung DU, Yoo HY, Kim SB, Lee JH, Park C, Kim SW (2015) Optimization of medium composition for enhanced cellulases production by mutant Penicillium brasilianum KUEB15 using statistical method. J Ind Eng Chem 25:145–150

    Article  CAS  Google Scholar 

  • Kajisa T, Yoshida M, Igarashi K, Katayama A, Nishino T, Samejima M (2004) Characterization and molecular cloning of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana. J Biosci Bioeng 98(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Kajisa T, Igarashi K, Samejima M (2009) The genes encoding glycoside hydrolase family 6 and 7 cellulases from the brown-rot fungus Coniophora puteana. J Wood Sci 55(5):376

    Article  CAS  Google Scholar 

  • Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38(7):1099–1104

    Article  CAS  Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzym Microb Technol 40(1):138–144

    Article  CAS  Google Scholar 

  • Kaur G, Satyanarayana T (2004) Production of extracellular pectinolytic, cellulolytic and xylanoytic enzymes by thermophilic mould Sporotrichum thermophile Apinis in solid state fermentation. Indian J Biotechnol 3(4):552–557

    Google Scholar 

  • Kluczek-Turpeinen B, Maijala P, Tuomela M, Hofrichter M, Hatakka A (2005) Endoglucanase activity of compost-dwelling fungus Paecilomyces inflatus is stimulated by humic acids and other low molecular mass aromatics. World J Microbiol Biotechnol 21(8–9):1603

    Article  CAS  Google Scholar 

  • Koseki T, Mese Y, Fushinobu S, Masaki K, Fujii T, Ito K et al (2008) Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl Microbiol Biotechnol 77(6):1279

    Article  CAS  PubMed  Google Scholar 

  • Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H et al (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622–627

    Article  CAS  PubMed  Google Scholar 

  • Kovács K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi G (2008) Trichoderma atroviride mutants with enhanced production of cellulases and β-glucosidase on pretreated willow. Enzym Microb Technol 43(1):48–55

    Article  CAS  Google Scholar 

  • Kovacs K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovács K, Szakacs G, Zacchi G (2009) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresour Technol 100(3):1350–1357

    Article  PubMed  CAS  Google Scholar 

  • Krishna SH, Rao KS, Babu JS, Reddy DS (2000) Studies on the production and application of cellulases from Trichoderma reesei QM-9414. Bioprocess Eng 22(5):467–470

    Article  Google Scholar 

  • Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L (2010) Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol 86(1):143–154

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Koo YM (2001) Pilot-scale production of cellulases using Trichoderma reesei Rut C-30 fed-batch mode. J Microbiol Biotechnol 11(2):229–233

    CAS  Google Scholar 

  • Leghlimi H, Meraihi Z, Boukhalfa-Lezzar H, Copinet E, Duchiron F (2013) Production and characterization of cellulolytic activities produced by Trichoderma longibrachiatum (GHL). Afr J Biotechnol 12(5):465–475

    Google Scholar 

  • Li DC, Lu M, Li YL, Lu J (2003) Purification and characterization of an endocellulases from the thermophilic fungus Chaetomium thermophilum CT2. Enzym Microb Technol 33(7):932–937

    Article  CAS  Google Scholar 

  • Lockington RA, Rodbourn L, Barnett S, Carter CJ, Kelly JM (2002) Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol 37(2):190–196

    Article  CAS  PubMed  Google Scholar 

  • Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Santa Anna LMM, De Castro AM et al (2011) Enzymatic hydrolysis of pretreated sugarcane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46(5):1196–1201

    Article  CAS  Google Scholar 

  • Mariyam I (2011) Multistep mutagenesis for the over-expression of cellulases in Humicola insolens. Pak J Bot 43(1):669–677

    Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695

    Article  CAS  PubMed  Google Scholar 

  • Martins LF, Kolling D, Camassola M, Dillon AJP, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99(5):1417–1424

    Article  CAS  PubMed  Google Scholar 

  • Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanperä J, Biotec PL (2004) Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzym Microb Technol 34(3–4):332–341

    Article  CAS  Google Scholar 

  • Milala MA, Shehu BB, Zanna H, Omosioda VO (2009) Degradation of agro-waste by cellulases from Aspergillus candidus. Asian J Biotechnol 1(2):51–56

    Article  CAS  Google Scholar 

  • Mølhøj M, Ulvskov P, Dal Degan F (2001) Characterization of a functional soluble form of a Brassica napus membrane-anchored endo-1, 4-β-glucanase heterologously expressed in Pichia pastoris. Plant Physiol 127(2):674–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Mrudula S, Murugammal R (2011) Production of cellulases by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42(3):1119–1127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murashima K, Nishimura T, Nakamura Y, Koga J, Moriya T, Sumida N et al (2002) Purification and characterization of new endo-1, 4-β-D-glucanases from Rhizopus oryzae. Enzym Microb Technol 30(3):319–326

    Article  CAS  Google Scholar 

  • Narra M, Dixit G, Divecha J, Madamwar D, Shah AR (2012) Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour Technol 121:355–361

    Article  CAS  PubMed  Google Scholar 

  • Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA, Furriel RPM (2010) Purification and biochemical properties of a glucose-stimulated β-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol 48(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Ng IS, Li CW, Chan SP, Chir JL, Chen PT, Tong CG et al (2010) High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour Technol 101(4):1310–1317

    Article  CAS  PubMed  Google Scholar 

  • Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Demethoxylation of [O 14 CH 3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19(4):555

    Article  CAS  PubMed  Google Scholar 

  • Niranjane AP, Madhou P, Stevenson TW (2007) The effect of carbohydrate carbon sources on the production of cellulases by Phlebia gigantea. Enzym Microb Technol 40(6):1464–1468

    Article  CAS  Google Scholar 

  • Obodai M, Cleland-Okine J, Vowotor KA (2003) Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products. J Ind Microbiol Biotechnol 30(3):146–149

    Article  CAS  PubMed  Google Scholar 

  • Obruca S, Marova I, Matouskova P, Haronikova A, Lichnova A (2012) Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiol 57(3):221–227

    Article  CAS  Google Scholar 

  • Ojumu TV, Solomon BO, Betiku E, Layokun SK, Amigun B (2003) Cellulases production by Aspergillus flavus Linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Afr J Biotechnol 2(6):150–152

    Article  CAS  Google Scholar 

  • Omojasola PF, Jilani OP (2008) Cellulases production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisiae cultured on waste materials from orange. Pak J Biol Sci 11(20):2382–2388

    Article  CAS  PubMed  Google Scholar 

  • Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crop Prod 18(1):37–45

    Article  CAS  Google Scholar 

  • Panagiotou G, Christakopoulos P, Olsson L (2005) Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profiling. Enzym Microb Technol 36(5–6):693–699

    Article  CAS  Google Scholar 

  • Panagiotou G, Granouillet P, Olsson L (2006) Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Appl Microbiol Biotechnol 72(6):1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Anh PN, Okuda N (2004) Bioconversion of waste office paper to L (+)-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresour Technol 93(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Parkkinen T, Koivula A, Vehmaanperä J, Rouvinen J (2008) Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 17(8):1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102(22):10618–10624

    Article  CAS  PubMed  Google Scholar 

  • Phillips CM, Beeson WT IV, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6(12):1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, He H, Li N, Ling M, Liang Z (2010) Isolation and characterization of a thermostable cellulases-producing Fusarium chlamydosporum. World J Microbiol Biotechnol 26(11):1991–1997

    Article  CAS  Google Scholar 

  • Ramanathan G, Banupriya S, Abirami D (2010) Production and optimization of cellulases from Fusarium oxysporum by submerged fermentation. J Sci Ind Res 69(6):454–459

    Google Scholar 

  • Reddy GV, Babu PR, Komaraiah P, Roy KRRM, Kothari IL (2003) Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38(10):1457–1462

    Article  CAS  Google Scholar 

  • Rocky-Salimi K, Hamidi-Esfahani Z (2010) Evaluation of the effect of particle size, aeration rate and harvest time on the production of cellulases by Trichoderma reesei QM9414 using response surface methodology. Food Bioprod Process 88(1):61–66

    Article  CAS  Google Scholar 

  • Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39(12):1871–1876

    Article  CAS  Google Scholar 

  • Schmidt H, Taniwaki MH, Vogel RF, Niessen L (2004) Utilization of AFLP markers for PCR-based identification of Aspergillus carbonarius and indication of its presence in green coffee samples. J Appl Microbiol 97(5):899–909

    Article  CAS  PubMed  Google Scholar 

  • Sehnem NT, de Bittencourt LR, Camassola M, Dillon AJ (2006) Cellulases production by Penicillium echinulatum on lactose. Appl Microbiol Biotechnol 72(1):163–167

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99(14):6556–6564

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa T, Shibuya H, Nojiri M, Yoshida S, Ishihara M (2008) Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase (EG-II) from Fomitopsis palustris: role of EG-II in larch holocellulose hydrolysis. Appl Environ Microbiol 74(18):5857–5861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Singh N, Bishnoi NR (2009a) Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int J Environ Sci Eng 1:1

    CAS  Google Scholar 

  • Singh R, Kumar R, Bishnoi K, Bishnoi NR (2009b) Optimization of synergistic parameters for thermostable cellulases activity of Aspergillus heteromorphus using response surface methodology. Biochem Eng J 48(1):28–35

    Article  CAS  Google Scholar 

  • Singhania RR, Sukumaran RK, Pillai A, Prema P, Szakacs G, Pandey A (2006) Solid-state fermentation of lignocellulosic substrates for cellulases production by Trichoderma reesei NRRL 11460. Indian J Biotechnol 5(3):332–336

    Google Scholar 

  • Singhania RR, Saini JK, Saini R, Adsul M, Mathur A, Gupta R, Tuli DK (2014) Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases. Bioresour Technol 169:490–495

    Article  CAS  PubMed  Google Scholar 

  • Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochem 44(5):540–545

    Article  CAS  Google Scholar 

  • Szijártó N, Siika-aho M, Tenkanen M, Alapuranen M, Vehmaanperä J, Réczey K, Viikari L (2008) Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 136(3–4):140–147

    Article  PubMed  CAS  Google Scholar 

  • Takashima S, Ohno M, Hidaka M, Nakamura A, Masaki H, Uozumi T (2007) Correlation between cellulose binding and activity of cellulose-binding domain mutants of Humicola grisea cellobiohydrolase 1. FEBS Lett 581(30):5891–5896

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643

    Article  CAS  PubMed  Google Scholar 

  • Tao YM, Zhu XZ, Huang JZ, Ma SJ, Wu XB, Long MN, Chen QX (2010) Purification and properties of endoglucanase from a sugarcane bagasse hydrolyzing strain, Aspergillus glaucus XC9. J Agric Food Chem 58(10):6126–6130

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JH, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Nat Acad Sci 106:22157–22162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomás-Pejó E, García-Aparicio M, Negro MJ, Oliva JM, Ballesteros M (2009) Effect of different cellulases dosages on cell viability and ethanol production by Kluyveromyces marxianus in SSF processes. Bioresour Technol 100(2):890–895

    Article  PubMed  CAS  Google Scholar 

  • Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulases from Trichoderma reesei. Green Chem 5(4):443–447

    Article  CAS  Google Scholar 

  • Valášková V, Baldrian P (2006) Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Res Microbiol 157(2):119–124

    Article  PubMed  CAS  Google Scholar 

  • Van Wyk JPH, Mohulatsi M (2003) Biodegradation of wastepaper by cellulases from Trichoderma viride. Bioresour Technol 86(1):21–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sampathkumar, K., Kumar, V., Sivamani, S., Sivakumar, N. (2019). An Insight into Fungal Cellulases and Their Industrial Applications. In: Srivastava, M., Srivastava, N., Ramteke, P., Mishra, P. (eds) Approaches to Enhance Industrial Production of Fungal Cellulases . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14726-6_2

Download citation

Publish with us

Policies and ethics