Skip to main content

Bridging the Gap Towards Flying: Archaeopteryx as a Unique Evolutionary Tool to Inquiry-Based Learning

  • Chapter
  • First Online:
Evolution Education Re-considered

Abstract

A theoretically derived sixth-grade classroom module focusing on the evolution of birds contains the core of our study. Participants, assumed to be novices in evolutionary classroom issues when they completed matching hands-on experiments based on the inquiry-based vision, learned about the theoretical background and formulated explanations based on observations. Our age-appropriate inquiry-based hands-on and multimedia workstations focusing on the unique Archaeopteryx fossil contained a (replica) fossil with its extraordinary importance for better understanding evolution. Student-centred object-based activities including self-dependent learning opportunities were supported by the individual learning stations. The method applied was scientific inquiry which is assumed to allow students to derive empirically supported explanations. The structure originated in the 5 ā€˜Eā€™ (engage, explore, explain, extent and evaluate), a key concept regarded as optimally supporting individual cognitive learning. The module integrated (a) arts in science with (b) authentic tools and aimed to further interesting in learning science. It intended to promote enthusiasm, to support successful learning in science and to cross-link interdisciplinary tools. A working booklet and various tools provided background information about, for instance, the bird flight and probable life of Archaeopteryx. Participation caused a substantial and sustained increase in individual knowledge scores after the lesson unit, i.e. signalling a sustained learning success. As no gender effect appeared, the module apparently affects female and male students equally. Subsequent conclusions for everyday teaching in school are discussed and recommendations for teaching derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1ā€“12.

    ArticleĀ  Google ScholarĀ 

  • Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloomā€™s taxonomy of educational objectives. Boston: Allyn and Bacon.

    Google ScholarĀ 

  • Barrett, T. J., Stull, G. S., Hsu, T. M., & Hegarty, M. (2015). Constrained interactivity for relating multiple representations in Science. When virtual is better than real. Computers & Education, 81, 69ā€“81.

    ArticleĀ  Google ScholarĀ 

  • Bissinger, K., & Bogner, F. X. (2017). Environmental literacy in practice: Education on tropical rainforests and climate change. Journal Environment, Development and Sustainability, 1ā€“16.

    Google ScholarĀ 

  • Blancke, S., Boudry, M., Braeckman, J., deSmedt, J., & deCruz, H. (2011). Dealing with creationist challenges. What European Biology teachers might expect in the classroom. Journal of Biology Education, 45(4), 176ā€“182.

    Google ScholarĀ 

  • Bogner, F. X. (1998). The influence of short-term outdoor ecology education on long-term variables of environmental perspective. Journal of Environmental Education, 29(4), 17ā€“29.

    ArticleĀ  Google ScholarĀ 

  • Bogner, F. X. (1999). Empirical evaluation of an educational conservation programme introduced in Swiss Secondary Schools. International Journal of Science Education, 21, 1169ā€“1185.

    ArticleĀ  Google ScholarĀ 

  • Bossert, U. (1998). Archaeopteryxā€”Untersuchung eines Fossilfundes. [A.ā€”Investigating a fossil]. Biologie in der Schule, 47(6), 333ā€“335.

    Google ScholarĀ 

  • Catley, K. M. (2006). Darwinā€™s missing linkā€”A novel paradigm for evolution education. Science Education, 90(5), 767ā€“783. https://doi.org/10.1002/sce.20152.

    ArticleĀ  Google ScholarĀ 

  • Cavallo, A. M., & McCall, D. (2008). Seeing may not mean believing: Examining studentsā€™ understandings & beliefs in evolution. The American Biology Teacher, 70(9), 522ā€“530.

    ArticleĀ  Google ScholarĀ 

  • Cummins, J. (2005). A proposal for action: Strategies for recognizing heritage language competence as a learning resource within the mainstream classroom. The Modern Language Journal, 89, 585ā€“592.

    Google ScholarĀ 

  • Cunningham, D. L., & Wescott D. J. (2009). Still more ā€œfancyā€ and ā€œmythā€ than ā€œfactā€ in studentsā€™ conceptions of evolution. Evolution: Education and Outreach, 2(3), 505ā€“517.

    Google ScholarĀ 

  • Deadman, J. A., & Kelly, P. J. (1978). What do secondary school boys understand about evolution and heredity before they are taught the topics? Journal of Biological Education, 12(1), 7ā€“15.

    ArticleĀ  Google ScholarĀ 

  • DeWitt, J., Archer, L., & Osborne, J. (2013). Nerdy, brainy and normal: Childrenā€™s and parentā€™s constructions of those who are highly engaged with science. Research in Science Education, 43(4), 1455ā€“1476.

    ArticleĀ  Google ScholarĀ 

  • Dieser, O., & Bogner, F. X. (2015). Young peopleā€™s cognitive achievement as fostered by hands-on-centred environmental education. Environmental Education Research. https://doi.org/10.1080/13504622.2015.1054265.

    ArticleĀ  Google ScholarĀ 

  • Dieser, O., & Bogner, F. X. (2017). How individual environmental values influence knowledge acquisition of adolescents within a week-long outreach biodiversity module. Journal of Global Research in Education and Social Science, 9(4), 213ā€“224.

    Google ScholarĀ 

  • Dobzhansky, T. (1973). Nothing makes sense in biology except in the light of evolution. The American Biology Teacher, 35(3), 125ā€“129.

    ArticleĀ  Google ScholarĀ 

  • Dodson, P. (1985). Review of the international archaeopteryx conference. Journal of Vertebrate Palaeontology, 5(2), 177ā€“179. https://doi.org/10.1080/02724634.1985.10011856.

    ArticleĀ  Google ScholarĀ 

  • Driver, R., & Easley, J. (1978). Pupils and paradigms: a review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61ā€“84.

    ArticleĀ  Google ScholarĀ 

  • Erickson, G. M., Rauhut, O. W. M., Zhou, Z., Turner, A. H., Inouye, B. D., Hu, D., & Norell, M. A. (2009). Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS One, 4(10), 1ā€“9.

    Google ScholarĀ 

  • Evans, E. M., & Lane, J. D. (2011). Contradictory or complementary? Creationist and evolutionist explanations of the origin of species. Human Development, 54, 144ā€“159. https://doi.org/10.1159/000329130.

    ArticleĀ  Google ScholarĀ 

  • Field, A. (2009). Discovering statistics using SPSS (3rd ed.). Thousand Oaks, CA: Sage.

    Google ScholarĀ 

  • Foth, C., Tischlinger, H., & Rauhut, O. W. M. (2014). New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature, 511, 79ā€“82.

    ArticleĀ  Google ScholarĀ 

  • Fremerey, C., & Bogner, F. X. (2014). Learning about drinking water: How important are the three dimensions of knowledge that can change individual behaviour? Education Sciences, 4, 213ā€“228.

    ArticleĀ  Google ScholarĀ 

  • Fremerey, C., & Bogner, F. X. (2015). Cognitive learning in authentic environments in relation to green attitude preferences. Studies in Educational Evaluation, 44, 9ā€“15.

    ArticleĀ  Google ScholarĀ 

  • Geier, C. S., & Bogner, F. X. (2011). Learning at workstations. Studentsā€™ satisfaction, attitudes towards cooperative learning and intrinsic motivation. Journal for Educational Research Online, 3(2), 3ā€“14.

    Google ScholarĀ 

  • Goldschmidt, M., & Bogner, F.-X. (2015). Learning about genetic engineering in an outreach laboratory: Influence of motivation and gender on studentsā€™ cognitive achievement. International Journal of Science Education, Part B, 6(2), 166ā€“187.

    ArticleĀ  Google ScholarĀ 

  • Goodale, T. A. (2017). Utility of context-based learning to influence teacher understanding of evolution and genetics concepts related to food security issues in East Africa (in press).

    Google ScholarĀ 

  • Girwidz, R., Bogner, F. X., Robitzko, T., & Schaal, S. (2006a). Media assisted learning in science education: An interdisciplinary approach to hibernation and energy transfer. Science Education International, 17(2), 95ā€“107.

    Google ScholarĀ 

  • Girwidz, R., Robitzko, T., Schaal, S., & Bogner, F. X. (2006b). Theoretical concepts for using multimedia in science education. Science Education International, 17(2), 77ā€“93.

    Google ScholarĀ 

  • GropengieƟer, H., Harms, U., & Kattmann, U. (2013). Auswahl und VerknĆ¼pfung der Lerninhalte [Selecting and connecting learning contents]. In Fachdidaktik Biologie. Donauwƶrth: Aulis.

    Google ScholarĀ 

  • Hammann, M., & Aschoff, R. (2013). SchĆ¼lervorstellungen im Biologieunterricht: Ursachen fĆ¼r Lernschwierigkeiten [Student conceptions in Biology lessons: Causes of learning difficulties]. Berlin: Springer.

    Google ScholarĀ 

  • Hampden-Thompson, G., & Bennett, J. (2013). Science teaching and learning activities and studentā€™s engagement in science. International Journal of Science Education, 35(8), 1325ā€“1343.

    ArticleĀ  Google ScholarĀ 

  • Harlen, W. (2010). Principles and big ideas of science education. Hatfield: Association for Science Education. http://www.ase.org.uk/documents/principles-and-big-ideas-of-science-education.

  • Hermann, R. S. (2008). Evolution as a controversial issue: A review of instructional approaches. Science & Education, 17, 1011ā€“1032.

    ArticleĀ  Google ScholarĀ 

  • Jakobi, S. R. (2010). ā€œLittle Monkeys on the Grass ā€¦ā€ How people for and against evolution fail to understand the theory of evolution. Evolution: Education & Outreach, 3(3), 416ā€“419.

    Google ScholarĀ 

  • Kattmann, U. (2017). Geschichte und Verwandtschaft der Lebewesen. Ein Basiskonzept der Evolutionsbiologie [History and relationship of animals. A basic concept of evolution]. Unterricht Biologie, 421, 39.

    Google ScholarĀ 

  • Kossack, A., & Bogner, F. X. (2012). How does a one-day environmental education programme support individual connectedness with nature? Journal of Biological Education, 46(3), 180ā€“187.

    ArticleĀ  Google ScholarĀ 

  • LieflƤnder, A., & Bogner, F. X. (2014). The effects of childrenā€™s age and sex on acquiring pro-environmental attitudes through environmental education. Journal of Environmental Education, 45(2), 105ā€“117.

    ArticleĀ  Google ScholarĀ 

  • Lienert, G. A. (1969). Testaufbau und Testanalyse [Test construction and Analysis] (3rd ed.). Weinheim: Julius Beltz.

    Google ScholarĀ 

  • Marth, M., & Bogner, F. X. (2018). Does the issue of bionics within a student-centered module generate longterm knowledge. Studies in Educational Evaluation, 55, 117ā€“124.

    Google ScholarĀ 

  • Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90(2), 312ā€“320.

    Google ScholarĀ 

  • Mayr, E. (1997). This is biology. Cambridge, MA: Harvard University Press.

    Google ScholarĀ 

  • Mead, R., Hejmadi, M., & Hurst, L. D. (2017). Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance. PLoS Biology, 15(5), e2002255.

    ArticleĀ  Google ScholarĀ 

  • Minner, D. D., Levy, A. J., & Century, J. (2002). Inquiry-based science instructionā€”What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching. https://doi.org/10.10002/tea.20347.

  • Morgan, J. M. (1992). A theoretical basis for evaluating wildlife-related education programs. The American Biology Teacher, 54, 153ā€“157.

    ArticleĀ  Google ScholarĀ 

  • Mumford, M. D. (2002). Social innovations: Ten cases from Benjamin Franklin. Creativity Research Journal, 14(2), 253ā€“266.

    ArticleĀ  Google ScholarĀ 

  • Nachtigall, W. (1985). Warum Vƶgel fliegen [Why birds fly]. Hamburg: Rasch & Rƶhring.

    Google ScholarĀ 

  • OECD. (2012). Programme for the international assessment of adult competencies (PIAAC). Paris.

    Google ScholarĀ 

  • Ostrom, J. H. (1976). Archaeopteryx and the origin of birds. Biological Journal of the Linnean Society, 8, 91ā€“182.

    ArticleĀ  Google ScholarĀ 

  • Peter, D. S. (1994). Entwicklung des Vogelflugs [Development of the bird flight]. Praxis der Naturwissenschaften, 43(7), 10ā€“14.

    Google ScholarĀ 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211ā€“227.

    ArticleĀ  Google ScholarĀ 

  • Randler, C., & Bogner, F. X. (2002). Comparing methods of instruction using bird species identification skills as indicators. Journal of Biological Education, 36(4), 2ā€“9.

    Google ScholarĀ 

  • Randler, C., & Bogner, F. X. (2006). Cognitive achievement of group-based hands-on identification skill training. Journal of Biological Education, 40(4), 161ā€“166.

    ArticleĀ  Google ScholarĀ 

  • Sattler, S., & Bogner, F. X. (2017). Short- and long-term outreach at the zoo: Cognitive learning about marine ecological and conservational issues. Environmental Education Research, 23(2), 252ā€“268. https://doi.org/10.1080/13504622.2016.1144173.

    ArticleĀ  Google ScholarĀ 

  • Scharfenberg, F.-J., & Bogner, F. X. (2010). Instructional efficiency of changing cognitive load in an out-of-school laboratory. International Journal of Science Education, 32(6), 829ā€“844.

    ArticleĀ  Google ScholarĀ 

  • Scharfenberg, F.-J., Bogner, F. X., & Klautke, S. (2006). The sustainability of external control groups for empirical control purposes: A cautionary story in science education research. Electronic Journal of Science Education, 11(1), 22ā€“36.

    Google ScholarĀ 

  • Schmid, S., & Bogner, F. X. (2015). Effects of studentsā€™ effort scores in a structured inquiry unit on long-term recall abilities of content knowledge. Education Research International, (Article ID 826734).

    Google ScholarĀ 

  • Schƶnfelder, M., & Bogner, F. X. (2017). How to sustainably increase studentsā€™ willingness to protect pollinators. Environmental Education Research, 2ā€“13.

    Google ScholarĀ 

  • Schumm, M., & Bogner, F. X. (2016). The impact of science motivation on cognitive achievement within a 3-lesson unit about renewable energies. Studies in Educational Evaluation, 50, 14ā€“21.

    ArticleĀ  Google ScholarĀ 

  • Sinatra, G. M., Kienhues, D., & Hofer, B. K. (2014). Addressing challenges to public understanding of science: Epistemic cognition, motivated reasoning and conceptual change. Educational Psychologist, 49(2), 123ā€“138.

    ArticleĀ  Google ScholarĀ 

  • Sotiriou, S., & Bogner, F. X. (2011). Inspiring science learning: Designing the science classroom of the future. Advanced Science Letters, 4, 3304ā€“3309.

    ArticleĀ  Google ScholarĀ 

  • Sotiriou, S., Bybee, R., & Bogner, F. X. (2016). PATHWAYS: A case of large-scale implementation of evidence-based practice in science inquiry-based science education. International Journal of Higher Education, 6(2), 1ā€“12.

    Google ScholarĀ 

  • Stamos, D. N. (2008). Evolution and the big questions. Sex, race and other matters. Malden: Blackwell Publishing.

    Google ScholarĀ 

  • Sturm, H., & Bogner, F. X. (2008). Student-oriented versus teacher-centred: The effect of learning at workstations about birds and bird flight on cognitive achievement and motivation. International Journal of Science Education, 30(7), 941ā€“959.

    ArticleĀ  Google ScholarĀ 

  • Sturm, H., & Bogner, F. X. (2010). Learning at workstations in two different environments: A museum and a classroom. Studies in Educational Evaluation, 36(1ā€“2), 14ā€“19.

    ArticleĀ  Google ScholarĀ 

  • Thomas, B. (2013). Archaeopteryx. Kinder lernen den einzigartigen Urvogel kennen [Kids get to know the unique fossil bird]. Grundschule Sachunterricht, 57, 28ā€“33.

    Google ScholarĀ 

  • To, C., Tenenbaum, H. R., & Hogh, H. (2017). Secondary school studentsā€™ reasoning about evolution. Journal of Research in Science Teaching, 54(2), 247ā€“273.

    ArticleĀ  Google ScholarĀ 

  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535ā€“585.

    ArticleĀ  Google ScholarĀ 

  • Weber, I., & Kattmann, U. (1991). Archaeopteryxā€”ein befiederter Dinosaurier? [A.ā€”A feathered dinosaur]. Unterricht Biologie, 15, 41ā€“43.

    Google ScholarĀ 

  • Wellnhofer, P. (2008). Archaeopteryx. Der Urvogel von Solnhofen [The fossil bird of Solnhofen] (pp. 205ā€“216). MĆ¼nchen: Pfeil.

    Google ScholarĀ 

  • White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modelling and metacognition: Making science accessible to all students. Cognition and Instruction, 16, 3ā€“118.

    ArticleĀ  Google ScholarĀ 

  • Zabel, J., & GropengieƟer, H. (2011). Learning progress in evolution theory: Climbing a ladder or roaming a landscape? Journal of Biological Education, 45(3), 143ā€“149.

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by the European HORIZON-2020 framework labelled CREATIONS: Developing an Engaging Science Classroom (Grant Agreement No. 665917; http://creations-project.eu). We would like to thank all students and teachers who supported our study. We kindly thank M. Wiseman for constructive discussion and assistance in statistical analyses, H.-D. Haas at the Jura-Museum in Eichstaett for providing the Archaeopteryx fossil replica as well as him and K. Elsner-Mann for supporting our first pilot test runs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz X. Bogner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buck, A., Sotiriou, S., Bogner, F.X. (2019). Bridging the Gap Towards Flying: Archaeopteryx as a Unique Evolutionary Tool to Inquiry-Based Learning. In: Harms, U., Reiss, M. (eds) Evolution Education Re-considered. Springer, Cham. https://doi.org/10.1007/978-3-030-14698-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14698-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14697-9

  • Online ISBN: 978-3-030-14698-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics