Skip to main content

State-of-the-Art Approach: System-on-Package

  • Chapter
  • First Online:
Systems-Level Packaging for Millimeter-Wave Transceivers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 34))

  • 734 Accesses

Abstract

Up to this point in the book, two system packaging strategies have been discussed in much detail: SoC, where all system components have to appear on one IC die, and MCM, where all system components appear on two or more dice, but the packaging is shared by all of them. What both of these packaging strategies lack is provision for additional system components to be included in the package, external to all dice. This where the concept of SoP comes into play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tummala RR, Swaminathan M. System-on-package: miniaturization of the entires. 1st ed. New York: McGraw-Hill Professional; 2008.

    Google Scholar 

  2. Mack W. 3-D system in package—how to cope with increasing challenges. Electron Dev Fail Anal. 2012;14(3):4–11.

    Google Scholar 

  3. Lee YC, Park CS. LTCC-based monolithic system-in-package (SiP) module for millimeter-wave applications. Int J RF Microwave Comput Aided Eng. 2016;26(9):803–11.

    Article  Google Scholar 

  4. Dong M, Santagata F, Sokolovskij R, Wei J, Yuan C, Zhang G. 3D system-in-package design using stacked silicon submount technology. Microelectron Int. 2015;32(2):63–72.

    Article  Google Scholar 

  5. Huang S, DeLaCruz J. Improvements of system-in-package integration and electrical performance using BVA wire bonding. IEEE Trans Compon Packag Manuf Technol. 2017;7(7):1020–34.

    Article  Google Scholar 

  6. Song S, Kim Y, Maeng J, Lee H, Kwon Y, Seo KS. A millimeter-wave system-on-package technology using a thin-film substrate with a flip-chip interconnection. IEEE Trans Adv Packag. 2009;32(1):101–8.

    Article  Google Scholar 

  7. Liu Y, Agrawal A, Natarajan A. Millimeter-wave IC-antenna cointegration for integrated transmitters and receivers. IEEE Antennas Wirel Propag Lett. 2016;15:1848–52.

    Article  Google Scholar 

  8. Wu P, Liu F, Li J, Chen C, Hou F, Cao L, Wan L. Design and implementation of a rigid-flex RF front-end system-in-package. Microsyst Technol. 2017;23(10):4579–89.

    Article  Google Scholar 

  9. Hagelauer A, Wojnowski M, Pressel K, Weigel R, Kissinger D. Integrated systems-in-package: heterogeneous integration of millimeter-wave active circuits and passives in fan-out wafer-level packaging technologies. IEEE Microwave Mag. 2018;19(1):48–56.

    Article  Google Scholar 

  10. Lin Y, Kang C, Chua L, Choi WK, Yoon SW. Advanced 3D eWLB-PoP (embedded wafer level ball grid array-package on package) technology. In: 2016 IEEE 66th electronic components and technology conference (ECTC); 2016; Las Vegas. p. 1772–7.

    Google Scholar 

  11. Druml N, Schilling J, Pachler W, Roitner B, Ruprechter T, Bock H, Holweg G. Secured miniaturized system-in-package contactless and passive authentication devices featuring NFC. Microprocess Microsyst. 2017;53:120–9.

    Article  Google Scholar 

  12. Fischer A, Stelzer A, Maurer L. A 77-GHz antenna and fully integrated radar transceiver in package. Int J Microw Wirel Technol. 2012;4(4):447–53.

    Article  Google Scholar 

  13. Chen K, Caparas JA, Chua L, Lin Y, Yoon SW. Advanced 3D eWLB-PoP (embedded wafer level ball grid array-package on package) technology. In: IEEE 10th international microsystems, packaging, assembly and circuits technology conference (IMPACT); 2015; Taipei. p. 96–100.

    Google Scholar 

  14. Dai WWM. Historical perspective of system in package (SiP). IEEE Circuits Syst Mag. 2016;16(2):50–61.

    Article  Google Scholar 

  15. Decrossas E, Glover MD, Porter K, Cannon T, Stegeman T, Allen-McCormack N, Hamilton MC, Mantooth HA. High-performance and high-data-rate quasi-coaxial LTCC vertical interconnect transitions for multichip modules and system-on-package applications. IEEE Trans Compon Packag Manuf Technol. 2015;5(3):307–13.

    Article  Google Scholar 

  16. Lee YC, Kim TW, Ariffin AB, Myoung NG. 60-GHz amplitude shift-keying receiver LTCC system-on-package module. Microw Opt Technol Lett. 2011;53(4):758–61.

    Article  Google Scholar 

  17. Jang JW, Byun J, Lee HY. Compact LTCC band pass filter using high-Q bondwire inductor for RF system-in-package applications. Microw Opt Technol Lett. 2009;51(6):1424–8.

    Article  Google Scholar 

  18. Kondratyev V, Lahti M, Jaakola T. On the design of LTCC filter for millimeter-waves. In: 2003 IEEE MTT-S international microwave symposium digest; 2003; Philadelphia. p. 1771–3.

    Google Scholar 

  19. Merkle T, Götzen R. Millimeter-wave surface mount technology for 3-D printed polymer multichip modules. IEEE Trans Compon Packag Manuf Technol. 2015;5(2):201–6.

    Article  Google Scholar 

  20. Raj PM, Sharma H, Sitaraman S, Mishra D, Tummala R. System scaling with nanostructured power and RF components. Proc IEEE. 2017;105(2):2330–46.

    Google Scholar 

  21. Kam DG, Liu D, Natarajan A, Reynolds S, Chen HC, Floyd BA. LTCC packages with embedded phased-array antennas for 60 GHz communications. IEEE Microwave Wirel Compon Lett. 2011;21(3):142–4.

    Article  Google Scholar 

  22. Tong Z, Fischer A, Stelzer A, Maurer L. Radiation performance enhancement of e-band antenna in package. IEEE Trans Compon Packag Manuf Technol. 2013;3(11):1953–9.

    Article  Google Scholar 

  23. Rida A, Margomeno A, Lee JS, Schmalenberg P, Nikolaou S, Tentzeris MM. Integrated wideband 2-D and 3-D transitions for millimeter-wave RF front-ends. IEEE Antennas Wirel Propag Lett. 2010;9:1080–3.

    Article  Google Scholar 

  24. Yang KS, Pinel S, Kim IK, Laskar J. Low-loss integrated-waveguide passive circuits using liquid-crystal polymer system-on-package (SOP) technology for millimeter-wave applications. IEEE Trans Microw Theory Tech. 2006;54(12):4572–9.

    Article  Google Scholar 

  25. Lee YC, Kong M, Zhang Y. Microelectromechanical systems and packaging. In: Lu D, Wong CP, editors. Materials for advanced packaging. Cham: Springer; 2017. p. 697–731.

    Chapter  Google Scholar 

  26. Chaturvedi S, Božanić M, Vasilache D, Sinha S, Giangu I, Stefanescu A. Cantilever for RF applications: model and technology. In: IEEE international semiconductor conference (CAS); 2017; Sinaia. p. 1–4.

    Google Scholar 

  27. Lau JH. Design and process of 3D MEMS system-in-package (SiP). J Microelectron Electron Packag. 2010;7(1):10–5.

    Article  Google Scholar 

  28. Haroun I, Plett C, Hsu YC, Chang DC. Compact 60-GHz IPD-based branch-line coupler for system-on-package V-band radios. IEEE Trans Compon Packag Manuf Technol. 2012;2(7):1070–4.

    Article  Google Scholar 

  29. Kim MS, Pulugurtha MR, Sundaram V, Tummala RR, Yun H. Ultrathin high-Q 2-D and 3-D RF inductors in glass packages. IEEE Trans Compon Packag Manuf Technol. 2018;8(4):643–52.

    Google Scholar 

  30. Aspemyr L, Sjoland H, Berthiot D, Proot JP. Glass carrier SOP technology demonstrated by design of a 19 GHz 3.8 dB CMOS LNA. In: IEEE international symposium on VLSI design, automation and test, VLSI-DAT’09; 2009; Chutung. p. 84–7.

    Google Scholar 

  31. Wu Z, Li X. A micromachining technology for integrating low-loss GHz RF passives on non-high-resistivity low-cost silicon MCM substrate. Microelectron Eng. 2010;87(11):2247–52.

    Article  Google Scholar 

  32. Samanta KK, Robertson ID. Advanced multilayer thick-film system-on-package technology for miniaturized and high performance CPW microwave passive components. IEEE Trans Compon Packag Manuf Technol. 2011;1(11):1695–705.

    Article  Google Scholar 

  33. Lim K, Pinel S, Davis M, Sutono A, Lee CH, Heo D, Obatoynbo A, Laskar J, Tantzeris EM, Tummala R. RF-system-on-package (SOP) for wireless communications. IEEE Microwave Mag. 2002;3(1):88–99.

    Article  Google Scholar 

  34. Ho CY, Jhong MF, Pan PC, Huang CY, Wang CC, Ting CY. Integrated antenna-in-package on low-cost organic substrate for millimeter-wave wireless communication applications. In: 2017 IEEE 67th electronic components and technology conference (ECTC); 2017; Lake Buena Vista. p. 242–7.

    Google Scholar 

  35. Merkle T, Götzen R, Choi JY, Koch S. Polymer multichip module process using 3-D printing technologies for D-band applications. IEEE Trans Microw Theory Tech. 2015;63(2):481–93.

    Article  Google Scholar 

  36. Robertson I, Somjit N, Chongcheawchamnan M. Microwave and millimetre-wave design for wireless communications. 1st ed. Chichester: Wiley; 2016.

    Google Scholar 

  37. LaMeres BJ, McIntosh C, Abusultan M. Novel 3-D coaxial interconnect system for use in system-in-package applications. IEEE Trans Adv Packag. 2010;33(1):37–47.

    Article  Google Scholar 

  38. Altmann F, Petzold M. Emerging techniques for 3-D integrated system-in-package failure diagnostics. Electron Dev Fail Anal. 2012;14(2):14–20.

    Google Scholar 

  39. Fakharzadeh M, Tazlauanu M. Methods for failure analysis and diagnosis of millimeter-wave system-in-packages. IEEE Trans Device Mater Reliab. 2017;17(2):371–80.

    Article  Google Scholar 

  40. Chow SG, Lin Y, Adams B, Yoon SW. Board level reliability improvement in eWLB (embedded wafer level BGA) packages. In: IEEE 2016 11th international microsystems, packaging, assembly and circuits technology conference (IMPACT); 2016; Taipei. p. 139–42.

    Google Scholar 

  41. Yu SY, Kwon YM, Kim J, Jeong T, Choi S, Paik KW. Studies on the thermal cycling reliability of BGA system-in-package (SiP) with an embedded die. IEEE Trans Compon Packag Manuf Technol. 2012;2(4):625–33.

    Article  Google Scholar 

  42. Qu S, Liu Y. Wafer-level chip-scale packaging. New York: Springer-Verlag; 2016.

    Google Scholar 

  43. Hong W. Millimeter-wave antennas and arrays. In: Chen ZN, Liu D, Nakano H, Qing X, Zwick T, editors. Handbook of antenna technologies. Cham: Springer; 2016. p. 1787–850.

    Chapter  Google Scholar 

  44. Mahanfar A, Lee SW, Parameswaran AM, Vaughan RG. Self-assembled monopole antennas with arbitrary shapes and tilt angles for system-on-chip and system-in-package applications. IEEE Trans Antennas Propag. 2010;58(9):3020–8.

    Article  Google Scholar 

  45. Hu S, Xiong YZ, Wang L, Li R, Shi J, Lim TG. Compact high-gain mmWave antenna for TSV-based system-in-package application. IEEE Trans Compon Packag Manuf Technol. 2012;2(5):841–6.

    Article  Google Scholar 

  46. Chen J, Henrie M, Mar MF, Nizic M. Mixed-signal methodology guide. San Jose: Cadence Design Systems; 2012.

    Google Scholar 

  47. Tang H. Mathematics of the finite element method. [Internet]. 1995 [cited 19 Nov 2018]. Available from: https://math.nist.gov/mcsd/savg/tutorial/ansys/FEM/.

  48. Chaskalovic J. Finite element methods for engineering sciences: theoretical approach and problem solving techniques. Cham: Springer; 2008.

    MATH  Google Scholar 

  49. Gu X, Liu D, Baks C, Valdes-Garcia A, Parker B, Islam MR, Natarajan A, Reynolds SK. Compact 4-chip package with 64 embedded dual-polarization antennas for W-band phased-array transceivers. In: 2014 IEEE 64th electronic components and technology conference (ECTC); 2014; Lake Buena Vista. p. 1272–7.

    Google Scholar 

  50. Zheng LR, Duo X, Shen M, Michielsen W, Tenhunen H. Cost and performance tradeoff analysis in radio and mixed-signal system-on-package design. IEEE Trans Adv Packag. 2004;27(2):364–75.

    Article  Google Scholar 

  51. Fischer A, Starzer F, Forstner HP, Kolmhofer E, Stelzer A. A 77-GHz SiGe frequency multiplier (×18) for radar transceivers. In: 2010 IEEE Bipolar/BiCMOS circuits and technology meeting (BCTM); 2010; Austin. p. 73–6.

    Google Scholar 

  52. Hamidipour A, Feger R, Poltschak S, Stelzer A. A 160-GHz system in package for short-range mm-wave applications. Int J Microw Wirel Technol. 2014;6(3–4):361–9.

    Article  Google Scholar 

  53. Sturdivant R. Microwave and millimeter-wave electronic packaging. Norwood: Artech House; 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2019). State-of-the-Art Approach: System-on-Package. In: Systems-Level Packaging for Millimeter-Wave Transceivers. Smart Sensors, Measurement and Instrumentation, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-14690-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14690-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14689-4

  • Online ISBN: 978-3-030-14690-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics