Skip to main content

Discrete Substrates: Package Foundation

  • Chapter
  • First Online:
Systems-Level Packaging for Millimeter-Wave Transceivers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 34))

  • 674 Accesses

Abstract

Integrated substrates were described in the previous chapter. In integrated designs, a substrate refers to a semiconductor material on which the transistors and other components are deposited, with Si being the most popular substrate. This chapter, on the other hand, deals with discrete substrates. The meaning of the term “discrete substrates” is very wide, and there are several contexts in which discrete substrates could be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannachi C, Tatu SO. Performance comparison of 60 GHz printed patch antennas with different geometrical shapes using miniature hybrid microwave integrated circuits technology. IET Microw Antennas Propag. 2017;11(1):106–12.

    Article  Google Scholar 

  2. Sturdivant R. Microwave and millimeter-wave electronic packaging. Norwood: Artech House; 2013.

    Google Scholar 

  3. Tummala RR, Swaminathan M. System-on-package: miniaturization of the entire system. 1st ed. New York: McGraw-Hill Professional; 2008.

    Google Scholar 

  4. Greig WJ. Integrated circuit packaging, assembly and interconnections. 1st ed. New York: Springer; 2007.

    Google Scholar 

  5. Sturdivant R. Introduction to radio frequency and microwave microelectronic packaging. In: Ken K, Sturdivant R, editors. RF and microwave microelectronics packaging II. Cham: Springer; 2017. p. 1–17.

    Google Scholar 

  6. Yuan Y, Zhang SR, Zhou XH, Li EZ. MgTiO3 filled PTFE composites for microwave substrate applications. Mater Chem Phys. 2013;141(1):175–9.

    Article  Google Scholar 

  7. Shi S, Tortorici P. Fundamentals of advanced materials and processes in organic substrate technology. In: Yan L, Goyal D, editors. 3D microelectronic packaging. Cham: Springer; 2017. p. 261–91.

    Chapter  Google Scholar 

  8. Rajab KZ, Dougherty JP. Dielectric properties at millimeter-wave and THz bands. In: Liu D, Gaucher B, Pfeiffer U, Grzyb J, editors. Advanced millimeter-wave technologies: antennas, packaging and circuits. Chichester: Wiley; 2009. p. 49–69.

    Chapter  Google Scholar 

  9. Joseph T, Sebastian MT. Microwave dielectric properties of (Sr1−xAx)2 (Zn1−xBx) Si2O7 ceramics (A = Ca, Ba and B = Co, Mg, Mn, Ni). J Am Ceram Soc. 2010;93(1):147–54.

    Article  Google Scholar 

  10. Fan W, Liu X. Advancement in high thermal conductive graphite for microelectronic packaging. In: Kuang K, Sturdivant R, editors. RF and microwave microelectronics packaging II. Cham: Springer; 2017. p. 129–45.

    Chapter  Google Scholar 

  11. Loutfy K, Sonuparlak B, Loutfy R. High thermal conductivity materials: aluminum diamond, aluminum silicon carbide and copper diamond. In: Kuang K, Sturdivant R, editors. RF and microwave microelectronics packaging II. Cham: Springer; 2017. p. 113–27.

    Chapter  Google Scholar 

  12. Lu X. Carbon nanotubes and graphene for microwave/RF electronics packaging. In: Kuang K, Sturdivant R, editors. RF and microwave microelectronics packgaging. Cham: Springer; 2017. p. 147–67.

    Chapter  Google Scholar 

  13. Pfeiffer U. Millimeter-wave packaging. In: Liu D, Gaucher M, Pfeiffer U, Grzyb J, editors. Advanced millimeter-wave technologies: antennas, packaging and circuits. Chichester: Wiley; 2009. p. 15–48.

    Chapter  Google Scholar 

  14. Sturdivant R. Fundamentals of packaging at microwave and millimeter-wave frequencies. In: Kuang K, Kim F, Cahill SS, editors. RF and microwave microelectronics packaging. Cham: Springer; 2010. p. 1–23.

    Google Scholar 

  15. du Preez J, Sinha S. Millimeter-wave antennas: configurations and applications. Cham: Springer Nature; 2016.

    Google Scholar 

  16. Robertson I, Somjit N, Chongcheawchamnan M. Microwave and millimetre-wave design for wireless communications. 1st ed. Chichester: Wiley; 2016.

    Google Scholar 

  17. Rogers Corporation. RT/Duroid® laminates. [Internet]. 2018 [cited 4 July 2018]. Available from: https://www.rogerscorp.com/acs/producttypes/6/RT-duroid-Laminates.aspx.

  18. Isola Group. FR408 high performance laminate and prepreg datasheet. [Internet]. 2012.

    Google Scholar 

  19. Rogers Corporation. RT/Duroid® 6035HTC datasheet. [Internet]. 2015.

    Google Scholar 

  20. Semiconductor Wafer Inc. Alumina wafer. [Internet]. [cited 5 July 2018]. Available from: http://www.semiwafer.com/alumina%20wafer.html.

  21. Raj PM, Lee DW, Li L, Wang SX, Chakraborti S, Sharma H, Jain S, Tummala R. Embedded passives. In: Lu D, Wong CP, editors. Materials for advanced packaging. Cham: Springer; 2017. p. 767–812.

    Google Scholar 

  22. Synkiewicz B, Kulawik J, Skwarek A, Yashchyshyn Y, Piasecki P. High resolution patterns on LTCC substrates for microwave applications obtained by screen printing and laser ablation. In: 39th IEEE international spring seminar on electronics technology (ISSE); 2016; Budapest. p. 17–21.

    Google Scholar 

  23. Sasikala TS, Suma MN, Mohanan P, Pavithran C, Sebastian MT. Forsterite-based ceramic–glass composites for substrate applications in microwave and millimeter wave communications. J Alloy Compd. 2008;461(1–2):555–9.

    Article  Google Scholar 

  24. Huang T, Peng L, Li L, Wang R, Hu Y, Tu X. Low temperature sintering behavior of La-Co substituted M-type strontium hexaferrites for use in microwave LTCC technology. J Rare Earths. 2016;34(2):148–51.

    Article  Google Scholar 

  25. Schott AG. Multilayer ceramics technology (HTCC and LTCC). [Internet]. [cited 6 July 2018]. Available from: https://www.schott.com/epackaging/english/overview/technologies/multi_ceramic.html.

  26. The Engineering Toolbox. Metals—melting temperatures. [Internet]. [cited 6 July 2018]. Available from: https://www.engineeringtoolbox.com/melting-temperature-metals-d_860.html.

  27. Lee YC, Park CS. LTCC-based monolithic system-in-package (SiP) module for millimeter-wave applications. Int J RF Microwave Comput Aided Eng. 2016;26(9):803–11.

    Article  Google Scholar 

  28. Song J, Song K, Wei J, Lin H, Xu J, Wu J, Su W. Microstructure characteristics and microwave dielectric properties of calcium apatite ceramics as microwave substrates. J Alloy Compd. 2018;731:264–70.

    Article  Google Scholar 

  29. Peng G, Wu CC, Diao CC, Yang CF. Investigation of the composites of epoxy and micro-scale BaTi4O9 ceramic powder as the substrate of microwave communication circuit. Microsyst Technol. 2018;24(1):343–9.

    Article  Google Scholar 

  30. Zhang Y, Martin RD, Shi S, Wright AA, Yao P, Shreve K, Mackrides D, Harrity C, Prather DW. Front-end receiving multichip module on multilayer LCP substrate for passive millimeter-wave imaging. IEEE Trans Compon Packag Manuf Technol. 2018.

    Google Scholar 

  31. Rida A, Margomeno A, Lee JS, Schmalenberg P, Nikolaou S, Tentzeris MM. Integrated wideband 2-D and 3-D transitions for millimeter-wave RF front-ends. IEEE Antennas Wirel Propag Lett. 2010;9:1080–3.

    Article  Google Scholar 

  32. Maestrojuan I, Palacios I, Ederra I, Gonzalo R. Use of low loss substrate for developing sub-millimeter-wave mixers. In: IEEE 2014 8th European conference on antennas and propagation (EuCAP); 2014; Barcelona. p. 2650–2.

    Google Scholar 

  33. Maestrojuan I, Palacios I, Ederra I, Gonzalo R. Use of COC substrates for millimeter-wave devices. Microw Opt Technol Lett. 2015;57(2):371–7.

    Article  Google Scholar 

  34. Johansson C, Uhlig S, Tageman O, Alping A, Haglund J, Robertsson M, Popall M, Frohlich L. Microwave circuits in multilayer inorganic-organic polymer thin film technology on laminate substrates. IEEE Trans Adv Packag. 2003;26(1):81–9.

    Article  Google Scholar 

  35. Sebastian MT, Jantunen H. Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol. 2010;7(4):415–34.

    Google Scholar 

  36. Koulouridis S, Kiziltas G, Zhou Y, Hansford DJ, Volakis JL. Polymer–ceramic composites for microwave applications: fabrication and performance assessment. IEEE Trans Microw Theory Tech. 2006;54(12):4202–8.

    Article  Google Scholar 

  37. Dong M, Santagata F, Sokolovskij R, Wei J, Yuan C, Zhang G. 3D system-in-package design using stacked silicon submount technology. Microelectron Int. 2015;32(2):63–72.

    Article  Google Scholar 

  38. Shih YC, Li K, Kasel K, Fong L, Holz G, Shalkhauser K. A high performance quartz package for millimeter-wave applications. In: 1991 IEEE MTT-S international microwave symposium digest; 1991. p. 1063–6.

    Google Scholar 

  39. Vorobiev A, Berge J, Gevorgian S. Thin film Ba0.25Sr0.75TiO3 voltage tunable capacitors on fused silica substrates for applications in microwave microelectronics. Thin Solid Films. 2007;515(16):6606–10.

    Article  Google Scholar 

  40. Ranjkesh N, Basha M, Taeb A, Zandieh A, Gigoyan S, Safavi-Naeini S. Silicon-on-glass dielectric waveguide—part I: for millimeter-wave integrated circuits. IEEE Trans Terahertz Sci Technol. 2015;5(2):268–79.

    Article  Google Scholar 

  41. Taeb A, Ranjkesh N, Gigoyan S, Rafi G, Safavi-Naeini S. A millimeter-wave dielectric resonator antenna based on silicon-on-glass (SOG) technology. In: 2016 17th international symposium on antenna technology and applied electromagnetics (ANTEM); 2016; Montreal. p. 1–2.

    Google Scholar 

  42. Gupta N, Mishra A. Selection of substrate material for hybrid microwave integrated circuits (HMICs). Energetika. 2016;62(1–2):78–86.

    Google Scholar 

  43. Drishya V, Unnimaya AN, Naveenraj RSEK, Ratheesh R. Preparation, characterization, and dielectric properties of PP/CaTiO3 composites for microwave substrate applications. Int J Appl Ceram Technol. 2016;13(5):810–5.

    Article  Google Scholar 

  44. Kaur A, Yang X, Chahal P. CNTs and graphene-based diodes for microwave and millimeter-wave circuits on flexible substrates. IEEE Trans Compon Packag Manuf Technol. 2016;6(12):1766–75.

    Article  Google Scholar 

  45. Petti L, Münzenrieder N, Vogt C, Faber H, Büthe L, Cantarella G, Bottacchi F, Anthopoulos TD, Tröster G. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev. 2016;3:1–53.

    Article  Google Scholar 

  46. Namitha LK, Chameswary J, Ananthakumar S, Sebastian MT. Effect of micro-and nano-fillers on the properties of silicone rubber-alumina flexible microwave substrate. Ceram Int. 2013;39(6):7077–87.

    Article  Google Scholar 

  47. Sharifi H, Lahiji RR, Lin HC, Ye PD, Katehi LP, Mohammadi S. Characterization of Parylene-N as flexible substrate and passivation layer for microwave and millimeter-wave integrated circuits. IEEE Trans Adv Packag. 2009;32(1):84–92.

    Article  Google Scholar 

  48. Gupta N. Material selection for thin-film solar cells using multiple attribute decision making approach. Mater Des. 2011;32(3):1667–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2019). Discrete Substrates: Package Foundation. In: Systems-Level Packaging for Millimeter-Wave Transceivers. Smart Sensors, Measurement and Instrumentation, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-14690-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14690-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14689-4

  • Online ISBN: 978-3-030-14690-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics