Skip to main content

Millimeter-Wave Research Challenges

  • Chapter
  • First Online:
  • 664 Accesses

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 34))

Abstract

This chapter focuses on placing millimeter-wave transceiver packaging research in the context of telecommunications. It is set to complement the fundamental transceiver theory introduced in Chap. 1. The chapter starts by expanding on the significance of short wavelengths touched on in Chap. 1, followed by an analysis of the millimeter-wave part of the frequency spectrum and various transmission bands available for millimeter-wave transmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rappaport TS, Murdock JN, Gutierrez F. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc IEEE. 2011;99(8):1390–436.

    Article  Google Scholar 

  2. Niu Y, Li Y, Jin D, Su L, Vasilakos AV. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Netw. 2015;21(8):2657–76.

    Article  Google Scholar 

  3. International Telecommunication Union. Nomenclature of the frequency and wavelength bands used in telecommunications. ITU-R Recommendation V.431 [Internet]. 2000 May [cited 2015 May 19]. Available from: http://www.itu.int/rec/R-REC-V.431/en.

  4. du Preez J, Sinha S. Millimeter-wave antennas: configurations and applications. Berlin: Springer; 2016.

    Google Scholar 

  5. Alonge A, Afullo T. 60 GHz millimeter-wave radio in South Africa: Link design feasibility and prospects. In: Electromagnetic research symposium (PIERS); 2016; Shanghai. p. 2686–3691.

    Google Scholar 

  6. Baykas T, Sum CS, Lan Z, Wang J, Rahman MA, Harada H, Kato S. IEEE 802.15. 3c: The first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun Mag. 2011;49(7):114–21.

    Google Scholar 

  7. Perahia E, Cordeiro C, Park M, Yang LL. IEEE 802.11 ad: defining the next generation multi-Gbps Wi-Fi. In: 2010 7th IEEE consumer communications and networking conference; 2010; Las Vegas. p. 1–5.

    Google Scholar 

  8. Hsiao YH, Chang YC, Tsai CH, Huang TY, Aloui S, Huang DJ, Chen YH, Tsai PH, Kao JC, YH L, et al. A 77-GHz 2T6R transceiver with injection-lock frequency sextupler using 65-nm CMOS for automotive radar system application. IEEE Trans Microw Theory Tech. 2016;64(10):3031–3048.

    Google Scholar 

  9. Hasch J, Topak E, Schnabel R, Zwick T, Weigel R, Waldschmidt C. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Tech. 2012;60(3):845–60.

    Article  Google Scholar 

  10. Pozar M. Microwave engineering. 4th ed. Hoboken: Wiley; 2012.

    Google Scholar 

  11. du Preez J, Sinha S. Power amplifiers for millimeter-wave systems. In Process; 2017.

    Google Scholar 

  12. Adhikari P. Understanding millimeter wave wireless communication. White Paper: Loea Corporation; 2008.

    Google Scholar 

  13. Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Wong GN, Schulz JK, Samimi M, Gutierrez F Jr. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access. 2013;1(1):335–49.

    Article  Google Scholar 

  14. Cheng DK. Fundamentals of engineering electromagnetics. 1st ed. Reading: Addison-Wesley Publishing Company; 1993.

    Google Scholar 

  15. Kazimierczuk MK. RF power amplifiers. 2nd ed. Chiechester: Wiley; 2015.

    Google Scholar 

  16. Robertson I, Somjit N, Chongcheawchamnan M. Microwave and millimetre-wave design for wireless communications. 1st ed. Chichester: Wiley; 2016.

    Google Scholar 

  17. Tummala RR, Swaminathan M. System-on-package: miniaturization of the entire system. 1st ed. New York: McGraw-Hill Professional; 2008.

    Google Scholar 

  18. Hong W. Millimeter-wave antennas and arrays. In: Chen ZN, Liu D, Nakano H, Qing X, Zwick T, editors. Handbook of antenna technologies. Cham: Springer; 2016. p. 1787–850.

    Chapter  Google Scholar 

  19. Sturdivant R. Microwave and millimeter-wave electronic packaging. Norwood: Artech House; 2013.

    Google Scholar 

  20. Hornung R. Insertion loss and loss tangent. Rancho Cucamonga: Arlon, Materials for Electronics Division.

    Google Scholar 

  21. Sturdivant R. Introduction to radio frequency and microwave microelectronic packaging. In: Ken K, Sturdivant R, editors. RF and microwave microelectronics packaging II. Cham: Springer; 2017. p. 1–17.

    Google Scholar 

  22. Chen J, Henrie M, Mar MF, Nizic M. Mixed-signal methodology guide. San Jose: Cadence Design Systems; 2012.

    Google Scholar 

  23. Feng G, Boon CC, Meng F, Yi X, Yang K, Li C, Luong HC. Pole-converging intrastage bandwidth extension technique for wideband amplifiers. IEEE J Solid-State Circ. 2017;52(3):769–80.

    Article  Google Scholar 

  24. Hastings A. The art of analog layout. 2nd ed. Upper Saddle River: Prentice Hall; 2006.

    Google Scholar 

  25. Karim N. Electromagnetic shielding for RF and microwave packages. In: Kuang K, Sturdivant R, editors. RF and Microwave Microelectronic Packaging II. Cham: Springer; 2017. p. 43–62.

    Chapter  Google Scholar 

  26. Tsai JH, Huang WL, Lin CY, Chang RA. An X-band low-power CMOS low noise amplifier with transformer inter-stage matching networks. In 44th European microwave conference (EuMC); 2014; Rome. p. 1468–71.

    Google Scholar 

  27. Greig WJ. Integrated circuit packaging, assembly and interconnections. 1st ed. New York: Springer; 2007.

    Google Scholar 

  28. Grebennikov A, Sokal NO, Franco MJ. Switchmode RF and microwave power amplifiers. 2nd ed. Burlington: Elsevier; 2012.

    Google Scholar 

  29. Trabelsi H, Barraj I. A 3–5 GHz FSK-UWB transmitter for wireless personal healthcare applications. AEU-Int J Electron Commun. 2015;69(1):262–273.

    Google Scholar 

  30. Ji L, Xu Z, Zhou J, Zhai J. Highly efficient 10 W GaN Class F power amplifier using DPD. Microw J. 2013;56(10):120–30.

    Google Scholar 

  31. Sylvester D, Agarwal K, Shah S. Variability in nanometer CMOS: impact, analysis, and minimization. Integration. 2008;41(3):319–39.

    Article  Google Scholar 

  32. Seok S, Rolland N, Rolland PA. A novel packaging method using wafer-level BCB polymer bonding and glass wet-etching for RF applications. Sens Actuators, A. 2008;147(2):677–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2019). Millimeter-Wave Research Challenges. In: Systems-Level Packaging for Millimeter-Wave Transceivers. Smart Sensors, Measurement and Instrumentation, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-14690-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14690-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14689-4

  • Online ISBN: 978-3-030-14690-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics