Skip to main content

Automatic Discovery of Families of Network Generative Processes

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Designing plausible network models typically requires scholars to form a priori intuitions on the key drivers of network formation. Oftentimes, these intuitions are supported by the statistical estimation of a selection of network evolution processes which will form the basis of the model to be developed. Machine learning techniques have lately been introduced to assist the automatic discovery of generative models. These approaches may more broadly be described as “symbolic regression,” where fundamental network dynamic functions, rather than just parameters, are evolved through genetic programming. This chapter first aims at reviewing the principles, efforts, and the emerging literature in this direction, which is very much aligned with the idea of creating artificial scientists. Our contribution then aims more specifically at building upon an approach recently developed by us (Menezes and Roth, Sci Rep 4:6284, 2014) in order to demonstrate the existence of families of networks that may be described by similar generative processes. In other words, symbolic regression may be used to group networks according to their inferred genotype (in terms of generative processes) rather than their observed phenotype (in terms of statistical/topological features). Our empirical case is based on an original dataset of 238 anonymized ego-centered networks of Facebook friends, further yielding insights on the formation of sociability networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In terms of potential applications, this approach has been evoked in the context of human connectome modeling [3, 18], as an alternative to conventional social simulation models [7] or to appraise matrimonial preferences from genealogical networks [74].

  2. 2.

    To compute distances we use an heuristic based on a random walk, for (1) the exact computation is computationally intensive and, what is more, (2) new connections are also likely guided by a hop-by-hop navigation mechanism instead of an omniscient knowledge of the exact number of hops separating two given nodes.

  3. 3.

    ER is admittedly a basic null model. Yet, opting for a richer model is likely to induce bias: for instance, a fitness function based on a comparison with a configuration model would precisely incorporate target network degree distributions, making it impossible to directly approximate them.

  4. 4.

    We used the metric MDS manifold embedding provided by the scikit-learn Python module.

  5. 5.

    Given the undirected nature of these networks, we simplify the notation for generators that use only variables from either the origin side or target side. Suppose we have the generator 3⋅k i + d; here, this is equivalent to 3⋅k j + d, so we simply write 3⋅k + d.

References

  1. Acar, E., Dunlavy, D.M., Kolda, T.G.: Link prediction on evolving data using matrix and tensor factorizations. In: Proceedings of ICDMW’09, IEEE International Conference on Data Mining Workshops, pp. 262–269. IEEE, Piscataway (2009)

    Google Scholar 

  2. Adar, E., Zhang, L., Adamic, L.A., Lukose, R.M.: Implicit structure and the dynamics of blogspace. In: Workshop on the Weblogging Ecosystem, 13th International World Wide Web Conference (2004)

    Google Scholar 

  3. Adolphs, R.: The unsolved problems of neuroscience. Trends Cogn. Sci. 19(4), 173–175 (2015)

    Article  Google Scholar 

  4. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proceedings ACM 32nd Annual ACM Symposium on Theory of Computing, pp. 171–180. ACM, New York (2000)

    Google Scholar 

  5. Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM: Workshop on Link Analysis, Counter-terrorism and Security (2006)

    Google Scholar 

  6. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C.C. (ed) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011)

    Chapter  Google Scholar 

  7. Amblard, F., Bouadjio-Boulic, A., Gutiérrez, C.S., Gaudou, B.: Which models are used in social simulation to generate social networks? A review of 17 years of publications in JASSS. In: Winter Simulation Conference (WSC), 2015, pp 4021–4032. IEEE, Piscataway (2015)

    Google Scholar 

  8. Anderson, C.J., Wasserman, S., Faust, K.: Building stochastic blockmodels. Soc. Net. 14, 137–161 (1992)

    Article  Google Scholar 

  9. Anderson, C.J., Wasserman, S., Crouch, B.: A p* primer: logit models for social networks. Soc. Net. 21, 37–66 (1999)

    Article  Google Scholar 

  10. Arora, V., Ventresca, M.: A multi-objective optimization approach for generating complex networks. In: Companion Proceedings of GECCO’16 18th Genetic and Evolutionary Computation Conference, pp. 15–16. ACM, New York (2016)

    Google Scholar 

  11. Arora, V., Ventresca, M.: Action-based modeling of complex networks. Sci. Rep. 7, 6673 (2017)

    Article  ADS  Google Scholar 

  12. Avena-Koenigsberger, A., Goñi, J., Solé, R., Sporns, O.: Network morphospace. J. R. Soc. Interface 12(103), 20140881 (2015)

    Article  Google Scholar 

  13. Bailey, A., Ventresca, M., Ombuki-Berman, B.: Automatic generation of graph models for complex networks by genetic programming. In: Proceedings GECCO’12 14th ACM Annual Conference on Genetic and Evolutionary Computation, pp. 711–718. ACM, New York (2012)

    Google Scholar 

  14. Bailey, A., Ventresca, M., Ombuki-Berman, B.: Genetic programming for the automatic inference of graph models for complex networks. IEEE Trans. Evol. Comput. 18(3), 405–419 (2014)

    Article  Google Scholar 

  15. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. Barabási, A.L., Jeong, H., Ravasz, E., Neda, Z., Vicsek, T., Schubert, A.: Evolution of the social network of scientific collaborations. Physica A 311, 590–614 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Berger, N., Borgs, C., Chayes, J.T., D’Souza, R.M., Kleinberg, R.D.: Competition-induced preferential attachment. In: Proceedings of the 31st International Colloquium on Automata, Languages and Programming, pp. 208–221 (2004)

    Google Scholar 

  18. Betzel, R.F., Avena-Koenigsberger, A., Goñi, J., He, Y., De Reus, M.A., Griffa, A., Vértes, P.E., Mišic, B., Thiran, J.P., Hagmann, P., et al.: Generative models of the human connectome. Neuroimage 124, 1054–1064 (2016)

    Article  Google Scholar 

  19. Bliss, C.A., Frank, M.R., Danforth, C.M., Dodds, P.S.: An evolutionary algorithm approach to link prediction in dynamic social networks. J. Comput. Sci. 5(5), 750–764 (2014)

    Article  MathSciNet  Google Scholar 

  20. Block, P., Stadtfeld, C., Snijders, T.A.B.: Forms of dependence: comparing SAOMs and ERGMs from basic principles. Sociol. Methods Res. 48(1) (2016)

    Google Scholar 

  21. Block, P., Koskinen, J., Hollway, J., Steglich, C., Stadtfeld, C.: Change we can believe in: comparing longitudinal network models on consistency, interpretability and predictive power. Soc. Net. 52, 180–191 (2018)

    Article  Google Scholar 

  22. Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer Science & Business Media, New York (2005)

    MATH  Google Scholar 

  23. Brennecke, J., Rank, O.N.: The interplay between formal project memberships and informal advice seeking in knowledge-intensive firms: a multilevel network approach. Soc. Net. 44, 307–318 (2016)

    Article  Google Scholar 

  24. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  25. Caldarelli, G., Capocci, A., De Los Rios, P., Munoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89(25), 258702 (2002)

    Article  ADS  Google Scholar 

  26. Charbey, R., Prieur, C.: Graphlet-based characterization of many ego networks. hal-01764253v2 (2018)

    Google Scholar 

  27. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)

    Article  ADS  Google Scholar 

  28. Cointet, J.P., Roth, C.: Local networks, local topics: structural and semantic proximity in blogspace. In: Proceedings 4th ICWSM AAAI International Conference on Weblogs and Social Media, pp. 223–226. AAAI, Menlo Park (2010)

    Google Scholar 

  29. Colizza, V., Banavar, J.R., Maritan, A., Rinaldo, A.: Network structures from selection principles. Phys. Rev. Lett. 92(19), 198701 (2004)

    Article  ADS  Google Scholar 

  30. Corominas-Murtra, B., Goñi, J., Solé, R.V., Rodríguez-Caso, C.: On the origins of hierarchy in complex networks. PNAS 110(33), 13316–13321 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. da Fontoura Costa, L., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)

    Article  ADS  Google Scholar 

  32. de Solla Price, D.J.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27(5–6), 292–306 (1976)

    Article  Google Scholar 

  33. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks with aging of sites. Phys. Rev. E 62, 1842–1845 (2000)

    Article  ADS  Google Scholar 

  34. D’Souza, R.M., Borgs, C., Chayes, J.T., Berger, N., Kleinberg, J.T.: Emergence of tempered preferential attachment from optimization. PNAS 104, 6112–6117 (2007)

    Article  ADS  Google Scholar 

  35. Estrada, E.: Topological structural classes of complex networks. Phys. Rev. E 75(1), 016103 (2007)

    Article  ADS  Google Scholar 

  36. Fabrikant, A., Koutsoupias, E., Papadimitriou, C.H.: Heuristically optimized trade-offs: a new paradigm for power laws in the internet. In: ICALP ’02: Proceedings of the 29th International Colloquium on Automata, Languages and Programming, London, UK, pp. 110–122, Springer, Berlin (2002). ISBN 3-540-43864-5

    Google Scholar 

  37. Fienberg, S.E., Meyer, M.M., Wasserman, S.S.: Statistical analysis of multiple sociometric relations. J. Am. Stat. Assoc. 80(389), 51–67 (1985)

    Article  Google Scholar 

  38. Fortunato, S., Flammini, A., Menczer, F.: Scale-free network growth by ranking. Phys. Rev. Lett. 96, 218701 (2006)

    Article  ADS  Google Scholar 

  39. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)

    Article  MathSciNet  Google Scholar 

  40. Gilbert, N.: A simulation of the structure of academic science. Sociol. Res. Online 2(2), 1–15 (1997)

    Article  MathSciNet  Google Scholar 

  41. Gkantsidis, C., Mihail, M., Zegura, E.W.: The markov chain simulation method for generating connected power law random graphs. In: Proceedings 5th Workshop on Algorithm Engineering and Experiments (ALENEX) (2003)

    Google Scholar 

  42. Goetz, M., Leskovec, J., McGlohon, M., Faloutsos, C.: Modeling blog dynamics. In: ICWSM 2009 Proceedings 3rd International AAAI Conference on Weblogs and Social Media, AAAI, Menlo Park (2009)

    Google Scholar 

  43. Goñi, J., Avena-Koenigsberger, A., de Mendizabal, N.V., van den Heuvel, M.P., Betzel, R.F., Sporns, O.: Exploring the morphospace of communication efficiency in complex networks. PLoS One 8(3), e58070 (2013)

    Article  ADS  Google Scholar 

  44. Guimerà, R., Amaral, L.A.N.: Modeling the world-wide airport network. Eur. Phys. J. B 38, 381–385 (2004)

    Article  ADS  Google Scholar 

  45. Guimerà, R., Sales-Pardo, M.: Missing and spurious interactions and the reconstruction of complex networks. PNAS 106(52), 22073–22078 (2009)

    Article  ADS  Google Scholar 

  46. Guimera, R., Uzzi, B., Spiro, J., Nunes Amaral, L.A.: Team assembly mechanisms determine collaboration network structure and team performance. Science 308, 697–702 (2005)

    Article  ADS  Google Scholar 

  47. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3, 63–69 (2007)

    Article  ADS  Google Scholar 

  48. Hanneke, S., Fu, W., Xing, E.P.: Discrete temporal models of social networks. Elect. J. Stat. 4, 585–605 (2010)

    Article  MathSciNet  Google Scholar 

  49. Harrison, K.R., Ventresca, M., Ombuki-Berman, B.M.: Investigating fitness measures for the automatic construction of graph models. In: Mora, A., Squillero, G. (eds) EvoApplications 2015 Applications of Evolutionary Computation. LNCS, vol. 9028, pp. 189–200. Springer, Berlin (2015)

    Google Scholar 

  50. Harrison, K.R., Ventresca, M., Ombuki-Berman, B.M.: A meta-analysis of centrality measures for comparing and generating complex network models. J. Comput. Sci. 17, 205–215 (2016)

    Article  Google Scholar 

  51. Holland, P., Leinhardt, S.: A dynamic model for social networks. J. Math. Soc. 5, 5–20 (1977)

    Article  MathSciNet  Google Scholar 

  52. Holland, P.W., Leinhardt, S.: An exponential family of probability distributions for directed graphs. J. Am. Stat. Assoc. 76(373), 33–65 (1981)

    Article  MathSciNet  Google Scholar 

  53. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Net. 5, 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  54. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2002)

    Article  ADS  Google Scholar 

  55. Hornby, G., Globus, A., Linden, D., Lohn, J.: Automated antenna design with evolutionary algorithms. In: Space 2006, AIAA SPACE Forum, pp. 1–8 (2006)

    Google Scholar 

  56. Jeong, H., Néda, Z., Barabási, A.L.: Measuring preferential attachment for evolving networks. Europhys. Lett. 61(4), 567–572 (2003)

    Article  ADS  Google Scholar 

  57. Karrer, B., Newman, M.E.J.: Random graphs containing arbitrary distributions of subgraphs. Phys. Rev. E 82, 066118 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  58. Koskinen, J.H., Snijders, T.A.B.: Bayesian inference for dynamic social network data. J. Statist. Plann. Inference 137(12), 3930–3938 (2007)

    Article  MathSciNet  Google Scholar 

  59. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311, 88–90 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  60. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: IEEE 41st Annual Symposium on Foundations of Computer Science (FOCS), p. 57. IEEE Computer Society, Washington (2000)

    Google Scholar 

  61. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proceedings WWW’08 17th International Conference World Wide Web, pp. 915–924. ACM, New York (2008)

    Google Scholar 

  62. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 177–187. ACM, New York (2005)

    Google Scholar 

  63. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)

    MathSciNet  MATH  Google Scholar 

  64. Lewis, K., Gonzalez, M., Kaufman, J.: Social selection and peer influence in an online social network. PNAS 109(1), 68–72 (2012)

    Article  ADS  Google Scholar 

  65. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM ’03: Proceedings of the 12th International Conference on Information and Knowledge Management, pp. 556–559. ACM Press, New York (2003)

    Google Scholar 

  66. Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 840–853 (2007)

    Article  Google Scholar 

  67. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A 390, 1150–1170 (2011)

    Article  ADS  Google Scholar 

  68. Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: Proceedings SIGCOMM’06 ACM International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 135–146. ACM, New York (2006)

    Google Scholar 

  69. Märtens, M., Kuipers, F., Mieghem, P.V.: Symbolic regression on network properties. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P., (edts.) Proceedings EuroGP 2017 Genetic Programming. LNCS, vol. 10196. Springer, Berlin (2017)

    Google Scholar 

  70. Menczer, F.: Evolution of document networks. PNAS 101(S1), 5261–5265 (2004)

    Article  ADS  Google Scholar 

  71. Menezes, T.: Evolutionary modeling of a blog network. In: Proceedings CEC’2011 IEEE Congress on Evolutionary Computation, pp. 909–916. IEEE, Piscataway (2011)

    Google Scholar 

  72. Menezes, T., Roth, C.: Automatic discovery of agent-based models: an application to social anthropology. Advances in Complex Systems 16(7), 1350027 (2013)

    Article  MathSciNet  Google Scholar 

  73. Menezes, T., Roth, C.: Symbolic regression of generative network models. Sci. Rep. 4, 6284 (2014)

    Article  ADS  Google Scholar 

  74. Menezes, T., Gargiulo, F., Roth, C., Hamberger, K.: New simulation techniques in kinship network analysis. Struct. Dynam. e-J. Anthropol. Related Sci. 9(2), 180–209 (2016)

    Google Scholar 

  75. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  ADS  Google Scholar 

  76. Ming, L., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  77. Newman, M.E.J., Strogatz, S., Watts, D.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(026118) (2001)

    Google Scholar 

  78. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs models of social networks. PNAS 99, 2566–2572 (2002)

    Article  ADS  Google Scholar 

  79. Onnela, J.P., Fenn, D.J., Reid, S., Porter, M.A., Mucha, P.J., Fricker, M.D., Jones, N.S.: Taxonomies of networks from community structure. Phys. Rev. E 86, 036104 (2012)

    Article  ADS  Google Scholar 

  80. Papadopoulos, F., Kitsak, M., Serrano, M.Á., Boguná, M., Krioukov, D.: Popularity versus similarity in growing networks. Nature 489, 537–540 (2012)

    Article  ADS  Google Scholar 

  81. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2(469) (2012)

    Google Scholar 

  82. Powell, W.W., White, D.R., Koput, K.W., Owen-Smith, J.: Network dynamics and field evolution: the growth of interorganizational collaboration in the life sciences. Am. J. Sociol. 110(4), 1132–1205 (2005)

    Article  Google Scholar 

  83. Pujol, J.M., Flache, A., Delgado, J., Sangüesa, R.: How can social networks ever become complex? Modelling the emergence of complex networks from local social exchanges. J. Art. Soc. Soc. Sim. 8(4) (2005)

    Google Scholar 

  84. Rao, A., Jana, R., Bandyopadhyay, S.: A markov chain Monte Carlo method for generating random (0,1)-matrices with given marginals. Sankhya: The Indian J. Stat. A 58, 225–242 (1996)

    MathSciNet  MATH  Google Scholar 

  85. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to Exponential Random Graph (p*) Models for social networks. Soc. Net. 29(2), 173–191 (2007)

    Article  Google Scholar 

  86. Roth, C.: Generalized preferential attachment: towards realistic socio-semantic network models. In: ISWC 4th International Semantic Web Conference, Workshop on Semantic Network Analysis, CEUR-WS Series (ISSN 1613-0073), vol. 171, pp. 29–42. Galway, Ireland (2005)

    Google Scholar 

  87. Roth, C.: Co-evolution in epistemic networks – reconstructing social complex systems. Struct. Dynam. e-J. Anthropol. Related Sci. 1(3). Article 2 (2006)

    Google Scholar 

  88. Rowe, M., Stankovic, M., Alani, H.: Who will follow whom? Exploiting semantics for link prediction in attention-information networks. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds) Proceedings ISWC’12 11th International Semantic Web Conference Part I. LNCS, vol. 7649, pp. 476–491. Springer, Berlin (2012)

    Google Scholar 

  89. Sarkar, P., Chakrabarti, D., Jordan, M.: Nonparametric link prediction in large scale dynamic networks. Electron. J. Stat. 8(2), 2022–2065 (2014)

    Article  MathSciNet  Google Scholar 

  90. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  ADS  Google Scholar 

  91. Snijders, T.A.B.: The statistical evaluation of social networks dynamics. Sociol. Methodol. 31, 361–395 (2001)

    Article  Google Scholar 

  92. Snijders, T.A.B., Steglich, C., Schweinberger, M.: Modeling the co-evolution of networks and behavior. In: van Montfort, K., Oud, H., Satorra, A. (eds) Longitudinal Models in the Behavioral and Related Sciences, pp. 41–71. Lawrence Erlbaum, Mahwah (2007)

    Google Scholar 

  93. Tabourier, L., Roth, C., Cointet, J.P.: Generating constrained random graphs using multiple edge switches. ACM J. Exp. Algorithmics 16(1.7) (2011)

    Google Scholar 

  94. Vázquez, A.: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67, 056104 (2003)

    Article  ADS  Google Scholar 

  95. Wang, P., Robins, G., Pattison, P., Lazega, E.: Exponential Random Graph Models for multilevel networks. Soc. Net. 35, 96–115 (2013)

    Article  Google Scholar 

  96. Wasserman, S.: Analyzing social networks as stochastic processes. J. Am. Stat. Assoc. 75(370), 280–294 (1980)

    Article  Google Scholar 

  97. Wasserman, S., Pattison, P.: Logit models and logistic regressions for social networks: I. an introduction to markov graphs and p*. Psychometrika 61(3), 401–425 (1996)

    Google Scholar 

  98. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  99. Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods. Knowl. Inf. Syst. 45(3), 751–782 (2015)

    Article  Google Scholar 

  100. Yaveroglu, Ö.N., Malod-Dognin, N., Devis, D., Levnajic, Z., Janjic, V., Karapandza, R., Stojmirovic, A., Przulj, N.: Revealing the hidden language of complex networks. Sci. Rep. 4(4547) (2014)

    Google Scholar 

  101. Yook, S.H., Jeong, H., Barabási, A.L.: Modeling the internet’s large-scale topology. PNAS 99(21), 13382–13386 (2002)

    Article  ADS  Google Scholar 

  102. Yuan, G., Murukannaiah, P.K., Zhang, Z., Singh, M.P.: Exploiting sentiment homophily for link prediction. In: Proceedings RecSys ’14 8th ACM Conference on Recommender Systems, pp. 17–24. ACM, New York (2014)

    Google Scholar 

  103. Zheleva, E., Sharara, H., Getoor, L.: Co-evolution of social and affiliation networks. In: Proceedings ACM SIGKDD’09 15th International Conference on Knowledge Discovery and Data Mining, pp. 1007–1015. ACM, New York (2009)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the members of our “Algopol” project team (ANR-12-CORD-0018) who organized most of the Facebook survey, including Irène Bastard, Dominique Cardon, Raphaël Charbey, Guilhem Fouetillou, Christophe Prieur, and Stéphane Raux. We further acknowledge interesting discussions with Jean-Philippe Cointet and David Fourquet regarding generative families, as well as the constructive feedback of our anonymous reviewers. This paper has been partially supported by the “Algodiv” grant (ANR-15-CE38-0001) funded by the ANR (French National Agency of Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Telmo Menezes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menezes, T., Roth, C. (2019). Automatic Discovery of Families of Network Generative Processes. In: Ghanbarnejad, F., Saha Roy, R., Karimi, F., Delvenne, JC., Mitra, B. (eds) Dynamics On and Of Complex Networks III. DOOCN 2017. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-14683-2_4

Download citation

Publish with us

Policies and ethics