Advertisement

Utilizing Flow Cytometry Effectively

  • Yue Guan
  • Jonathan B. MitchemEmail author
Chapter
Part of the Success in Academic Surgery book series (SIAS)

Abstract

Flow cytometry is a flexible and useful tool in the armamentarium of translational and basic researchers. Based on a microfluidic system that has roots in the 1930s, flow cytometry allows for the multi-parametric analysis of samples on a single cell basis in a high-throughput manner. This is accomplished by passing cells sequentially through light produced by lasers of a given wavelength that excite fluorochromes or dyes to emit light in a defined spectrum. The light emitted is then collected, transferred electronically as a signal, and stored for analysis. The data collected is then analyzed using specialized software and provides information about the number and type of cells in the sample, as well as the expression of different targets. Clinically, current uses for flow cytometry are primarily in hematologic malignancies and immunology. Research applications include a wide variety of uses including phenotyping, cell death and proliferation, cell signaling, fluorescence-activated cell sorting, and monitoring immune responses. Future advancements including imaging flow cytometry and mass cytometry will serve to broaden the application of this technology.

Keywords

Flow cytometry FACS Fluorescence-activated cell sorter Fluorochrome Analysis Research Phenotype Immunology Cancer biology Tumor immunology 

References

  1. 1.
    Givan AL. Flow Cytometry: an introduction. In: Hawley TS, Hawley RG, editors. Flow cytometry protocols. Totowa, NJ: Humana Press; 2011. p. 1–29.Google Scholar
  2. 2.
    Moldavan A. Photo-electric technique for the counting of microscopical cells. Science. 1934;80(2069):188–9.CrossRefGoogle Scholar
  3. 3.
    Kamentsky LA, Melamed MR, Derman H. Spectrophotometer: new instrument for ultrarapid cell analysis. Science. 1965;150(3696):630 LP–631.CrossRefGoogle Scholar
  4. 4.
    Van Dilla MA, Truiullo TT, Mullaney PF, Coultex JR. Cell microfluorometry: a method for rapid fluorescence measurement. Science. 1969;163(3872):1213–4.CrossRefGoogle Scholar
  5. 5.
    Hulett HR, Bonner WA, Barrett J, Herzenberg LA. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science. 1969;166(3906):747–9.CrossRefGoogle Scholar
  6. 6.
    Dittrich W, Göhde W. Notizen: Impulsfluorometrie bei Einzelzellen in Suspensionen. Z Naturforsch B. 1969;24(3):360–1.CrossRefGoogle Scholar
  7. 7.
    Fulwyler MJ. Electronic separation of biological cells by volume. Science. 1965;150(3698):910–1.CrossRefGoogle Scholar
  8. 8.
    Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37:163–76.CrossRefGoogle Scholar
  9. 9.
    Chandler WL. Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin Cytom. 2016;90(4):326–36.CrossRefGoogle Scholar
  10. 10.
    Cellular and Molecular Immunology – 9780323479783 | US Elsevier Health Bookshop [Internet]. Available from: https://www.us.elsevierhealth.com/cellular-and-molecular-immunology-9780323479783.html. Cited 4 Nov 2018.
  11. 11.
    Draxler DF, Madondo MT, Hanafi G, Plebanski M, Medcalf RL. A flowcytometric analysis to efficiently quantify multiple innate immune cells and T cell subsets in human blood. Cytometry A. 2017;91(4):336–50.CrossRefGoogle Scholar
  12. 12.
    Porembka MR, Mitchem JB, Belt BA, Hsieh C-S, Lee H-M, Herndon J, et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother. 2012;61(9):1373–85.CrossRefGoogle Scholar
  13. 13.
    Danova M, Torchio M, Comolli G, Sbrana A, Antonuzzo A, Mazzini G. The role of automated cytometry in the new era of cancer immunotherapy (Review). Mol Clin Oncol. 2018;9(4):355–61.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Van Asten I, Schutgens REG, Urbanus RT. Toward flow cytometry based platelet function diagnostics. Semin Thromb Hemost. 2018;44(3):197–205.CrossRefGoogle Scholar
  15. 15.
    Oyaert M, Delanghe J. Progress in automated urinalysis. Ann Lab Med. 2019;39(1):15.CrossRefGoogle Scholar
  16. 16.
    Mazzini G, Danova M. Fluorochromes for DNA staining and quantitation. Methods Mol Biol. 2017;1560:239–59.CrossRefGoogle Scholar
  17. 17.
    Nies KPH, Kraaijvanger R, Lindelauf KHK, Drent RJMR, Rutten RMJ, Ramaekers FCS, et al. Determination of the proliferative fractions in differentiating hematopoietic cell lineages of normal bone marrow. Cytometry A. 2018;93(11):1097–105.CrossRefGoogle Scholar
  18. 18.
    Lyons AB, Blake SJ, Doherty KV. Flow cytometric analysis of cell division by dilution of CFSE related dyes. Curr Protoc Cytom. 2013;64(Suppl 64):9.11.1–9.11.12.CrossRefGoogle Scholar
  19. 19.
    Vitale I, Jemaà M, Galluzzi L, Metivier D, Castedo M, Kroemer G. Cytofluorometric assessment of cell cycle progression. Totowa, NJ: Humana Press; 2013. p. 93–120.Google Scholar
  20. 20.
    Jaye DL, Bray RA, Gebel HM, Harris WAC, Waller EK. Translational applications of flow cytometry in clinical practice. J Immunol. 2012;188(10):4715–9.CrossRefGoogle Scholar
  21. 21.
    Knudson KM, Pritzl CJ, Saxena V, Altman A, Daniels MA, Teixeiro E. NFκB–Pim-1–Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114(9):E1659–67.CrossRefGoogle Scholar
  22. 22.
    Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526(7571):131–5.CrossRefGoogle Scholar
  23. 23.
    Legoux FP, Moon JJ. Peptide:MHC tetramer-based enrichment of epitope-specific T cells. J Vis Exp. 2012;(68)  https://doi.org/10.3791/4420.
  24. 24.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.CrossRefGoogle Scholar
  25. 25.
    Freer G. Intracellular staining and detection of cytokines by fluorescence-activated flow cytometry. Methods Mol Biol. 2014;1172:221–34.CrossRefGoogle Scholar
  26. 26.
    Desjobert C, El Maï M, Gérard-Hirne T, Guianvarc’h D, Carrier A, Pottier C, et al. Combined analysis of DNA methylation and cell cycle in cancer cells. Epigenetics. 2015;10(1):82–91.CrossRefGoogle Scholar
  27. 27.
    Puleston D. Detection of mitochondrial mass, damage, and reactive oxygen species by flow cytometry. Cold Spring Harb Protoc. 2015;2015(9):pdb.prot086298.CrossRefGoogle Scholar
  28. 28.
    Doan M, Vorobjev I, Rees P, Filby A, Wolkenhauer O, Goldfeld AE, et al. Diagnostic potential of imaging flow cytometry. Trends Biotechnol. 2018;36(7):649–52.CrossRefGoogle Scholar
  29. 29.
    Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–91.CrossRefGoogle Scholar
  30. 30.
    Basiji D, O’Gorman MRG. Imaging flow cytometry. J Immunol Methods. 2015;423:1–2.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG (outside the USA) 2019

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of Missouri School of MedicineColumbiaUSA
  2. 2.Department of SurgeryHarry S. Truman Memorial Veteran’s HospitalColumbiaUSA

Personalised recommendations