Skip to main content

Utilizing Flow Cytometry Effectively

  • Chapter
  • First Online:
Success in Academic Surgery: Basic Science

Part of the book series: Success in Academic Surgery ((SIAS))

  • 642 Accesses

Abstract

Flow cytometry is a flexible and useful tool in the armamentarium of translational and basic researchers. Based on a microfluidic system that has roots in the 1930s, flow cytometry allows for the multi-parametric analysis of samples on a single cell basis in a high-throughput manner. This is accomplished by passing cells sequentially through light produced by lasers of a given wavelength that excite fluorochromes or dyes to emit light in a defined spectrum. The light emitted is then collected, transferred electronically as a signal, and stored for analysis. The data collected is then analyzed using specialized software and provides information about the number and type of cells in the sample, as well as the expression of different targets. Clinically, current uses for flow cytometry are primarily in hematologic malignancies and immunology. Research applications include a wide variety of uses including phenotyping, cell death and proliferation, cell signaling, fluorescence-activated cell sorting, and monitoring immune responses. Future advancements including imaging flow cytometry and mass cytometry will serve to broaden the application of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Givan AL. Flow Cytometry: an introduction. In: Hawley TS, Hawley RG, editors. Flow cytometry protocols. Totowa, NJ: Humana Press; 2011. p. 1–29.

    Google Scholar 

  2. Moldavan A. Photo-electric technique for the counting of microscopical cells. Science. 1934;80(2069):188–9.

    Article  CAS  Google Scholar 

  3. Kamentsky LA, Melamed MR, Derman H. Spectrophotometer: new instrument for ultrarapid cell analysis. Science. 1965;150(3696):630 LP–631.

    Article  Google Scholar 

  4. Van Dilla MA, Truiullo TT, Mullaney PF, Coultex JR. Cell microfluorometry: a method for rapid fluorescence measurement. Science. 1969;163(3872):1213–4.

    Article  Google Scholar 

  5. Hulett HR, Bonner WA, Barrett J, Herzenberg LA. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science. 1969;166(3906):747–9.

    Article  CAS  Google Scholar 

  6. Dittrich W, Göhde W. Notizen: Impulsfluorometrie bei Einzelzellen in Suspensionen. Z Naturforsch B. 1969;24(3):360–1.

    Article  CAS  Google Scholar 

  7. Fulwyler MJ. Electronic separation of biological cells by volume. Science. 1965;150(3698):910–1.

    Article  CAS  Google Scholar 

  8. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37:163–76.

    Article  CAS  Google Scholar 

  9. Chandler WL. Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin Cytom. 2016;90(4):326–36.

    Article  CAS  Google Scholar 

  10. Cellular and Molecular Immunology – 9780323479783 | US Elsevier Health Bookshop [Internet]. Available from: https://www.us.elsevierhealth.com/cellular-and-molecular-immunology-9780323479783.html. Cited 4 Nov 2018.

  11. Draxler DF, Madondo MT, Hanafi G, Plebanski M, Medcalf RL. A flowcytometric analysis to efficiently quantify multiple innate immune cells and T cell subsets in human blood. Cytometry A. 2017;91(4):336–50.

    Article  CAS  Google Scholar 

  12. Porembka MR, Mitchem JB, Belt BA, Hsieh C-S, Lee H-M, Herndon J, et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother. 2012;61(9):1373–85.

    Article  CAS  Google Scholar 

  13. Danova M, Torchio M, Comolli G, Sbrana A, Antonuzzo A, Mazzini G. The role of automated cytometry in the new era of cancer immunotherapy (Review). Mol Clin Oncol. 2018;9(4):355–61.

    PubMed  PubMed Central  Google Scholar 

  14. Van Asten I, Schutgens REG, Urbanus RT. Toward flow cytometry based platelet function diagnostics. Semin Thromb Hemost. 2018;44(3):197–205.

    Article  Google Scholar 

  15. Oyaert M, Delanghe J. Progress in automated urinalysis. Ann Lab Med. 2019;39(1):15.

    Article  Google Scholar 

  16. Mazzini G, Danova M. Fluorochromes for DNA staining and quantitation. Methods Mol Biol. 2017;1560:239–59.

    Article  CAS  Google Scholar 

  17. Nies KPH, Kraaijvanger R, Lindelauf KHK, Drent RJMR, Rutten RMJ, Ramaekers FCS, et al. Determination of the proliferative fractions in differentiating hematopoietic cell lineages of normal bone marrow. Cytometry A. 2018;93(11):1097–105.

    Article  CAS  Google Scholar 

  18. Lyons AB, Blake SJ, Doherty KV. Flow cytometric analysis of cell division by dilution of CFSE related dyes. Curr Protoc Cytom. 2013;64(Suppl 64):9.11.1–9.11.12.

    Article  Google Scholar 

  19. Vitale I, Jemaà M, Galluzzi L, Metivier D, Castedo M, Kroemer G. Cytofluorometric assessment of cell cycle progression. Totowa, NJ: Humana Press; 2013. p. 93–120.

    Google Scholar 

  20. Jaye DL, Bray RA, Gebel HM, Harris WAC, Waller EK. Translational applications of flow cytometry in clinical practice. J Immunol. 2012;188(10):4715–9.

    Article  CAS  Google Scholar 

  21. Knudson KM, Pritzl CJ, Saxena V, Altman A, Daniels MA, Teixeiro E. NFκB–Pim-1–Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114(9):E1659–67.

    Article  CAS  Google Scholar 

  22. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526(7571):131–5.

    Article  CAS  Google Scholar 

  23. Legoux FP, Moon JJ. Peptide:MHC tetramer-based enrichment of epitope-specific T cells. J Vis Exp. 2012;(68) https://doi.org/10.3791/4420.

  24. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.

    Article  CAS  Google Scholar 

  25. Freer G. Intracellular staining and detection of cytokines by fluorescence-activated flow cytometry. Methods Mol Biol. 2014;1172:221–34.

    Article  Google Scholar 

  26. Desjobert C, El Maï M, Gérard-Hirne T, Guianvarc’h D, Carrier A, Pottier C, et al. Combined analysis of DNA methylation and cell cycle in cancer cells. Epigenetics. 2015;10(1):82–91.

    Article  Google Scholar 

  27. Puleston D. Detection of mitochondrial mass, damage, and reactive oxygen species by flow cytometry. Cold Spring Harb Protoc. 2015;2015(9):pdb.prot086298.

    Article  Google Scholar 

  28. Doan M, Vorobjev I, Rees P, Filby A, Wolkenhauer O, Goldfeld AE, et al. Diagnostic potential of imaging flow cytometry. Trends Biotechnol. 2018;36(7):649–52.

    Article  CAS  Google Scholar 

  29. Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–91.

    Article  CAS  Google Scholar 

  30. Basiji D, O’Gorman MRG. Imaging flow cytometry. J Immunol Methods. 2015;423:1–2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Mitchem M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG (outside the USA)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guan, Y., Mitchem, J.B. (2019). Utilizing Flow Cytometry Effectively. In: Kennedy, G., Gosain, A., Kibbe, M., LeMaire, S. (eds) Success in Academic Surgery: Basic Science. Success in Academic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-14644-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14644-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14643-6

  • Online ISBN: 978-3-030-14644-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics