Skip to main content

Considerations for Immunohistochemistry

  • Chapter
  • First Online:

Part of the book series: Success in Academic Surgery ((SIAS))

Abstract

Although immunohistochemistry (IHC) has been known and applied for decades, major advances such as robotic sample processing, digital slide image capture, and innovative computerized data analysis uphold the relevance of the technology in current laboratory practice. In keeping with this notion, the expression of a protein by a given tissue or cell can be readily defined using methods like immunoblotting or mass spectrometry. However, when it comes to assessing the microenvironmental location and potential cellular connections, only IHC can provide the pathophysiological spatial context. Thus, IHC enables the selective localization and visualization of protein antigens in tissue sections by means of antigen-specific antibodies that are conjugated to selective fluorescent or enzymatic tags, which can be readily revealed by fluorescence microscopy or chemically pigmented reactions. Since IHC relies on the highly specific antigen and antibody interactions, the technology can be used to identify cell or tissue antigens that range from amino acids and proteins to infectious agents and specific cellular populations and their relevant functional properties, thus underscoring its critical application as a key research/diagnostic tool for investigators studying animal or human tissues. With well-developed tests and controls, correct procedure, and equipment, IHC can be used to analyze a wide variety of cell and tissue structures, processes, and functions, such as cell cycle analysis and tissue protein binding in health and disease. Notably, these applications were previously inaccessible by traditional histochemistry staining techniques, which only identified a limited number of proteins and tissue structures. In the past, this process was semiquantitative at best, but new advances are making it possible to obtain quantitative results using IHC. The present chapter reviews the history and applications of IHC, basic principles, techniques, troubleshooting, analysis, and data interpretation. This chapter will further cover the latest innovations in IHC slide preparation and labeling for advanced diagnostic and prognostic applications, such as CyTOF and laser capture microdissection, which allows high-throughput quantitative methods of proteomics, real-time polymerase chain reaction (qRT-PCR), and genomics on selective cells and tissue regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marrack JR. Derived antigens as a means of studying the relation of specific combination to chemical structure: (section of therapeutics and pharmacology). Proc R Soc Med. 1934;27(8):1063–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Coons AHCH, Jones RN. Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med. 1941;47:200–2.

    Article  CAS  Google Scholar 

  3. Nakane PK, Pierce GB Jr. Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem. 1966;14(12):929–31.

    Article  CAS  PubMed  Google Scholar 

  4. Nakane PK. Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem. 1968;16(9):557–60.

    Article  CAS  PubMed  Google Scholar 

  5. Avrameas S, Uriel J. Method of antigen and antibody labelling with enzymes and its immunodiffusion application. Comptes rendus hebdomadaires des seances de l’Academie des sciences. Serie D: Sciences naturelles. 1966;262(24):2543–5.

    CAS  Google Scholar 

  6. Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970;18(5):315–33.

    Article  CAS  PubMed  Google Scholar 

  7. Mason DY, Sammons R. Alkaline phosphatase and peroxidase for double immunoenzymatic labelling of cellular constituents. J Clin Pathol. 1978;31(5):454–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mason DY, Sammons R. Rapid preparation of peroxidase: anti-peroxidase complexes for immunocytochemical use. J Immunol Methods. 1978;20:317–24.

    Article  CAS  PubMed  Google Scholar 

  9. Singer SJ. Preparation of an electron-dense antibody conjugate. Nature. 1959;183(4674):1523–4.

    Article  CAS  PubMed  Google Scholar 

  10. Sternberger LA. Electron microscopic immunocytochemistry: a review. J Histochem Cytochem. 1967;15(3):139–59.

    Article  CAS  PubMed  Google Scholar 

  11. Faulk WP, Taylor GM. An immunocolloid method for the electron microscope. Immunochemistry. 1971;8(11):1081–3.

    Article  CAS  PubMed  Google Scholar 

  12. Bullock G, Petrusz P, editors. Techniques in immunocytochemistry. London: Academic; 1982. 4 volumes.

    Google Scholar 

  13. Huang SN, Minassian H, More JD. Application of immunofluorescent staining on paraffin sections improved by trypsin digestion. Lab Investig. 1976;35(4):383–90.

    CAS  PubMed  Google Scholar 

  14. Shi SR, Key ME, Kalra KL. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem. 1991;39(6):741–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981;29(4):577–80.

    Article  CAS  PubMed  Google Scholar 

  16. Sabattini E, Bisgaard K, Ascani S, et al. The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol. 1998;51(7):506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu SM, Raine L. Protein A, avidin, and biotin in immunohistochemistry. J Histochem Cytochem. 1981;29(11):1349–53.

    Article  CAS  PubMed  Google Scholar 

  18. Hsu SM, Raine L, Fanger H. The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol. 1981;75(6):816–21.

    Article  CAS  PubMed  Google Scholar 

  19. Hsu SM, Raine L, Fanger H. A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol. 1981;75(5):734–8.

    Article  CAS  PubMed  Google Scholar 

  20. Krishnamurthy VK, Guilak F, Narmoneva DA, Hinton RB. Regional structure-function relationships in mouse aortic valve tissue. J Biomech. 2011;44(1):77–83.

    Article  PubMed  Google Scholar 

  21. Gordon A, Kozin ED, Keswani SG, et al. Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation. Wound Repair Regen. 2008;16(1):70–9.

    Article  PubMed  Google Scholar 

  22. Balaji S, Vaikunth SS, Lang SA, et al. Tissue-engineered provisional matrix as a novel approach to enhance diabetic wound healing. Wound Repair Regen. 2012;20(1):15–27.

    Article  PubMed  Google Scholar 

  23. Kim SJ, Kim JS, Papadopoulos J, et al. Circulating monocytes expressing CD31: implications for acute and chronic angiogenesis. Am J Pathol. 2009;174(5):1972–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cho H, Balaji S, Sheikh AQ, et al. Regulation of endothelial cell activation and angiogenesis by injectable peptide nanofibers. Acta Biomater. 2012;8(1):154–64.

    Article  CAS  PubMed  Google Scholar 

  25. Gu B, Kaneko T, Zaw SYM, et al. Macrophage populations show an M1-to-M2 transition in an experimental model of coronal pulp tissue engineering with mesenchymal stem cells. Int Endodont J. 2018. https://doi.org/10.1111/iej.13033.

    Article  PubMed  Google Scholar 

  26. Das A, Sinha M, Datta S, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 2015;185(10):2596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferraro NM, Dampier W, Weingarten MS, Spiller KL. Deconvolution of heterogeneous wound tissue samples into relative macrophage phenotype composition via models based on gene expression. Integr Biol. 2017;9(4):328–38.

    Article  CAS  Google Scholar 

  28. Sicari BM, Dziki JL, Siu BF, Medberry CJ, Dearth CL, Badylak SF. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials. 2014;35(30):8605–12.

    Article  CAS  PubMed  Google Scholar 

  29. Lee C, Lee J, Choi SA, et al. M1 macrophage recruitment correlates with worse outcome in SHH Medulloblastomas. BMC Cancer. 2018;18(1):535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Minami K, Hiwatashi K, Ueno S, et al. Prognostic significance of CD68, CD163 and folate receptor-beta positive macrophages in hepatocellular carcinoma. Exp Ther Med. 2018;15(5):4465–76.

    PubMed  PubMed Central  Google Scholar 

  31. Yu CC, Woods AL, Levison DA. The assessment of cellular proliferation by immunohistochemistry: a review of currently available methods and their applications. Histochem J. 1992;24(3):121–31.

    Article  CAS  PubMed  Google Scholar 

  32. Hurley JR, Cho H, Sheikh AQ, et al. Nanofiber Microenvironment Effectively Restores Angiogenic Potential of Diabetic Endothelial Cells. Advances in wound care. 2014;3(11):717–28.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Duan WR, Garner DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EA. Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol. 2003;199(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  34. Holubec H, Payne CM, Bernstein H, et al. Assessment of apoptosis by immunohistochemical markers compared to cellular morphology in ex vivo-stressed colonic mucosa. J Histochem Cytochem. 2005;53(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  35. Shigenaga MK, Aboujaoude EN, Chen Q, Ames BN. Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 1994;234:16–33.

    Article  CAS  PubMed  Google Scholar 

  36. Raina AK, Perry G, Nunomura A, Sayre LM, Smith MA. Histochemical and immunocytochemical approaches to the study of oxidative stress. Clin Chem Lab Med. 2000;38(2):93–7.

    Article  CAS  PubMed  Google Scholar 

  37. Cheuk W, Chan JK. Subcellular localization of immunohistochemical signals: knowledge of the ultrastructural or biologic features of the antigens helps predict the signal localization and proper interpretation of immunostains. Int J Surg Pathol. 2004;12(3):185–206.

    Article  CAS  PubMed  Google Scholar 

  38. Lewin B. Genes VIII. Pearson Prentice Hall: Upper Saddle River, NJ; 2004.

    Google Scholar 

  39. Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular cell. 2007;28(5):730–8.

    Article  CAS  PubMed  Google Scholar 

  40. Mandell JW. Phosphorylation state-specific antibodies: applications in investigative and diagnostic pathology. Am J Pathol. 2003;163(5):1687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baker AF, Dragovich T, Ihle NT, Williams R, Fenoglio-Preiser C, Powis G. Stability of phosphoprotein as a biological marker of tumor signaling. Clinical cancer research. 2005;11(12):4338–40.

    Article  CAS  PubMed  Google Scholar 

  42. Balaji S, Wang X, King A, et al. Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. FASEB J. 2017;31(3):868–81.

    Article  CAS  PubMed  Google Scholar 

  43. Poynter ME, Janssen-Heininger YM, Buder-Hoffmann S, Taatjes DJ, Mossman BT. Measurement of oxidant-induced signal transduction proteins using cell imaging. Free Radic Biol Med. 1999;27(11-12):1164–72.

    Article  CAS  PubMed  Google Scholar 

  44. Hayes AJ, Hughes CE, Caterson B. Antibodies and immunohistochemistry in extracellular matrix research. Methods. 2008;45(1):10–21.

    Article  CAS  PubMed  Google Scholar 

  45. Owen GR, Meredith DO, Gwynn I, Richards RG. Focal adhesion quantification - a new assay of material biocompatibility? Review. Eur Cells Mater. 2005;9:85–96. discussion 85–96.

    Article  CAS  PubMed  Google Scholar 

  46. Evanko SP, Chan CK, Johnson PY, Frevert CW, Wight TN. The biochemistry and immunohistochemistry of versican. Methods Cell Biol. 2018;143:261–79.

    Article  PubMed  Google Scholar 

  47. Merrilees MJ, Zuo N, Evanko SP, Day AJ, Wight TN. G1 domain of versican regulates hyaluronan organization and the phenotype of cultured human dermal fibroblasts. J Histochem Cytochem. 2016;64(6):353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelly-Goss MR, Ning B, Bruce AC, et al. Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. Sci Rep. 2017;7(1):9049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Dyment NA, Kazemi N, Aschbacher-Smith LE, et al. The relationships among spatiotemporal collagen gene expression, histology, and biomechanics following full-length injury in the murine patellar tendon. J Orthop Res. 2012;30(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  50. Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One. 2014;9(4):e96113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sinha M, Sen CK, Singh K, et al. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue. Nat Commun. 2018;9(1):936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. True LD. T. Atlas of diagnostic immunohistopathology. Philadelphia, PA: J.B. Lippincott Company; 1990.

    Google Scholar 

  53. Malatesta M. Histological and histochemical methods – theory and practice. Eur J Histochem. 2016;60:2639.

    PubMed Central  Google Scholar 

  54. Microscopy Society of America. Microscopy today. Middleton, WI: Microscopy Society of America; 2018.

    Google Scholar 

  55. Nissanov J, Bertrand L, Tretiak O. Cryosectioning distortion reduction using tape support. Microsc Res Tech. 2001;53(3):239–40.

    Article  CAS  PubMed  Google Scholar 

  56. Sompuram SR, Vani K, Messana E, Bogen SA. A molecular mechanism of formalin fixation and antigen retrieval. Am J Clin Pathol. 2004;121(2):190–9.

    Article  CAS  PubMed  Google Scholar 

  57. Boenisch T. Heat-induced antigen retrieval: what are we retrieving? J Histochem Cytochem. 2006;54(9):961–4.

    Article  CAS  PubMed  Google Scholar 

  58. Dabbs DJ. Diagnostic immunohistochemistry. New York: Churchill Livingstone; 2002.

    Google Scholar 

  59. Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. Journal of immunological methods. 1989;125(1-2):279–85.

    Article  CAS  PubMed  Google Scholar 

  60. van Gijlswijk RP, Zijlmans HJ, Wiegant J, et al. Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J Histochem Cytochem. 1997;45(3):375–82.

    Article  PubMed  Google Scholar 

  61. Hatanaka Y, Imaoka Y, Torisu K, et al. A simplified, sensitive immunohistochemical detection system employing signal amplification based on fluorescyl-tyramide/antifluorescein antibody reaction: its application to pathologic testing and research. Appl Immunohistochem Mol Morphol. 2008;16(1):87–93.

    CAS  PubMed  Google Scholar 

  62. Schweitzer B, Wiltshire S, Lambert J, et al. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci U S A. 2000;97(18):10113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wiltshire S, O’Malley S, Lambert J, et al. Detection of multiple allergen-specific IgEs on microarrays by immunoassay with rolling circle amplification. Clin Chem. 2000;46(12):1990–3.

    CAS  PubMed  Google Scholar 

  64. Sweeney E, Ward TH, Gray N, et al. Quantitative multiplexed quantum dot immunohistochemistry. Biochemical and biophysical research communications. 2008;374(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  65. Burry RW. Controls for immunocytochemistry: an update. J Histochem Cytochem. 2011;59(1):6–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ramos-Vara JA. Principles and methods of immunohistochemistry. Methods Mol Biol. 2011;691:83–96.

    Article  CAS  PubMed  Google Scholar 

  67. Fetsch PA, Abati A. The clinical immunohistochemistry laboratory: regulations and troubleshooting guidelines. Methods Mol Biol. 2010;588:399–412.

    Article  PubMed  Google Scholar 

  68. Cregger M, Berger AJ, Rimm DL. Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med. 2006;130(7):1026–30.

    CAS  PubMed  Google Scholar 

  69. Taylor CR, Levenson RM. Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment II. Histopathology. 2006;49(4):411–24.

    Article  CAS  PubMed  Google Scholar 

  70. Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4(7):844–7.

    Article  CAS  PubMed  Google Scholar 

  71. Kirkeby S, Thomsen CE. Quantitative immunohistochemistry of fluorescence labelled probes using low-cost software. J Immunol Methods. 2005;301(1-2):102–13.

    Article  CAS  PubMed  Google Scholar 

  72. Schulz KR, Danna EA, Krutzik PO, Nolan GP. Single-cell phospho-protein analysis by flow cytometry. Curr Protoc Immunol. 2012;Chapter 8:Unit 8 17 11–20.

    Google Scholar 

  73. Anchang B, Davis KL, Fienberg HG, et al. DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity. Proc Natl Acad Sci U S A. 2018;115(18):E4294–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fienberg HG, Nolan GP. High-dimensional cytometry. Preface. Curr Topics Microbiol Immunol. 2014;377:vii–viii.

    Google Scholar 

  75. Fienberg HG, Nolan GP. Mass cytometry to decipher the mechanism of nongenetic drug resistance in cancer. Curr Top Microbiol Immunol. 2014;377:85–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fienberg HG, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B. A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A. 2012;81(6):467–75.

    Article  PubMed  CAS  Google Scholar 

  77. Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov VI, Hedley DW. Imaging mass cytometry. Cytometry A. 2017;91(2):160–9.

    Article  PubMed  Google Scholar 

  79. Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: big data from small samples. Histol Histopathol. 2015;30(11):1255–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abdul-Salam VB, Wharton J, Cupitt J, Berryman M, Edwards RJ, Wilkins MR. Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension. Circulation. 2010;122(20):2058–67.

    Article  CAS  PubMed  Google Scholar 

  81. O’Rourke MB, Padula MP. Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and misconceptions of antigen retrieval. BioTechniques. 2016;60(5):229–38.

    PubMed  Google Scholar 

  82. Patel PG, Selvarajah S, Boursalie S, et al. Preparation of formalin-fixed paraffin-embedded tissue cores for both RNA and DNA extraction. J Vis Exp. 2016;114 https://doi.org/10.3791/54299.

  83. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. von Ahlfen S, Missel A, Bendrat K, Schlumpberger M. Determinants of RNA quality from FFPE samples. PloS one. 2007;2(12):e1261.

    Article  CAS  Google Scholar 

  85. Graw S, Meier R, Minn K, et al. Robust gene expression and mutation analyses of RNA-sequencing of formalin-fixed diagnostic tumor samples. Sci Rep. 2015;5:12335.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Santos MC, Saito CP, Line SR. Extraction of genomic DNA from paraffin-embedded tissue sections of human fetuses fixed and stored in formalin for long periods. Pathol Res Pract. 2008;204(9):633–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundeep G. Keswani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balaji, S., Li, H., Steen, E., Keswani, S.G. (2019). Considerations for Immunohistochemistry. In: Kennedy, G., Gosain, A., Kibbe, M., LeMaire, S. (eds) Success in Academic Surgery: Basic Science. Success in Academic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-14644-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14644-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14643-6

  • Online ISBN: 978-3-030-14644-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics