Advertisement

Modern Techniques for DNA, RNA, and Protein Assessment

  • Jurgis Alvikas
  • Matthew D. NealEmail author
Chapter
Part of the Success in Academic Surgery book series (SIAS)

Abstract

Advances in molecular and cellular biology have led to an in-depth understanding of the basic mechanisms of life and disease. Elucidation of principles of genetic information storage in DNA, transcription of this information into RNA, and translation of RNA into proteins have led to an exponential growth of techniques useful for screening, diagnosis, prognostication, and treatment. In a wide range of medical and surgical specialties, many of these techniques are already standard of care and are used on a daily basis. In an emerging model of precision medicine, data from DNA, RNA, and protein assessment of an individual patient will be used to guide their care. While much progress has been made, our understanding of majority of surgical diseases is incomplete. An academic surgeon with a career of scientific pursuit must have a thorough understanding of the current state of laboratory techniques for DNA, RNA, and protein analysis and of the knowledge gaps that future investigations should address. This chapter reviews the basics of genetic, genomic, transcriptomic, proteomic, and metabolomic analyses.

Keywords

DNA RNA Protein Sequencing Chromosome Microarray PCR Gel electrophoresis Centrifugation Chromatography Enzyme-linked immunosorbent assay (ELISA) Western blot Southern blot Northern blot Fluorescence resonance energy transfer (FRET) Flow cytometry Sequencing 

References

  1. 1.
    International Human Genome Sequencing Consortium I. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.  https://doi.org/10.1038/nature03001.CrossRefGoogle Scholar
  2. 2.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.  https://doi.org/10.1038/35057062.CrossRefGoogle Scholar
  3. 3.
    Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.  https://doi.org/10.1126/science.1058040.CrossRefGoogle Scholar
  4. 4.
    Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977;74(2):560–4. http://www.ncbi.nlm.nih.gov/pubmed/265521. Accessed 26 July 2018CrossRefGoogle Scholar
  5. 5.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7. http://www.ncbi.nlm.nih.gov/pubmed/271968. Accessed 26 July 2018CrossRefGoogle Scholar
  6. 6.
    Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17. http://www.ncbi.nlm.nih.gov/pubmed/1195397. Accessed 26 July 2018CrossRefGoogle Scholar
  7. 7.
    Mathews C, van Holde K, Appling D, Anthony-Cahill S. Biochemistry. 4th ed. Toronto: Pearson; 2013. p. 98–100.Google Scholar
  8. 8.
    Zavala AG, Kulkarni AS, Fortunato EA. A dual color Southern blot to visualize two genomes or genic regions simultaneously. J Virol Methods. 2014;198:64–8.  https://doi.org/10.1016/j.jviromet.2013.12.019.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Smith LM, Sanders JZ, Kaiser RJ, et al. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321(6071):674–9.  https://doi.org/10.1038/321674a0.CrossRefPubMedGoogle Scholar
  10. 10.
    Prober JM, Trainor GL, Dam RJ, et al. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987;238(4825):336–41. http://www.ncbi.nlm.nih.gov/pubmed/2443975. Accessed 26 July 2018CrossRefGoogle Scholar
  11. 11.
    Cohen AS, Najarian DR, Paulus A, Guttman A, Smith JA, Karger BL. Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis. Proc Natl Acad Sci U S A. 1988;85(24):9660–3. http://www.ncbi.nlm.nih.gov/pubmed/3200850. Accessed 26 July 2018CrossRefGoogle Scholar
  12. 12.
    Luckey JA, Drossman H, Kostichka AJ, et al. High speed DNA sequencing by capillary electrophoresis. Nucleic Acids Res. 1990;18(15):4417–21. http://www.ncbi.nlm.nih.gov/pubmed/2388826. Accessed 26 July 2018CrossRefGoogle Scholar
  13. 13.
    Stranneheim H, Lundeberg J. Stepping stones in DNA sequencing. Biotechnol J. 2012;7(9):1063–73.  https://doi.org/10.1002/biot.201200153.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Melamede RJ. Automatable process for sequencing nucleotide. Sept. 1989. https://www.osti.gov/biblio/5075085-automatable-process-sequencing-nucleotide. Accessed 26 July 2018.
  15. 15.
    Nyrén P. The history of pyrosequencing. In: Pyrosequencing protocols, vol. 373. New Jersey: Humana Press; 2007. p. 1–14.  https://doi.org/10.1385/1-59745-377-3:1.CrossRefGoogle Scholar
  16. 16.
    Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363. 365. http://www.ncbi.nlm.nih.gov/pubmed/9705713. Accessed 26 July 2018CrossRefGoogle Scholar
  17. 17.
    Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.  https://doi.org/10.1038/nature03959.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rothberg JM, Leamon JH. The development and impact of 454 sequencing. Nat Biotechnol. 2008;26(10):1117–24.  https://doi.org/10.1038/nbt1485.CrossRefPubMedGoogle Scholar
  19. 19.
    Bennett ST, Barnes C, Cox A, Davies L, Brown C. Toward the $1000 human genome. Pharmacogenomics. 2005;6(4):373–82.  https://doi.org/10.1517/14622416.6.4.373.CrossRefPubMedGoogle Scholar
  20. 20.
    Balasubramanian S, Bentley D. Polynucleotide arrays and their use in sequencing. 2001:WO 01/157248.Google Scholar
  21. 21.
    Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45.  https://doi.org/10.1038/nbt1486.CrossRefPubMedGoogle Scholar
  22. 22.
    Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev. 2006;16(6):545–52.  https://doi.org/10.1016/j.gde.2006.10.009.CrossRefPubMedGoogle Scholar
  23. 23.
    Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463(7279):311–7.  https://doi.org/10.1038/nature08696.CrossRefPubMedGoogle Scholar
  24. 24.
    Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20(2):265–72.  https://doi.org/10.1101/gr.097261.109.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shendure J, Porreca GJ, Reppas NB, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309(5741):1728–32.  https://doi.org/10.1126/science.1117389.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11(1):31–46.  https://doi.org/10.1038/nrg2626.CrossRefGoogle Scholar
  27. 27.
    Pourmand N, Karhanek M, Persson HHJ, et al. Direct electrical detection of DNA synthesis. Proc Natl Acad Sci U S A. 2006;103(17):6466–70.  https://doi.org/10.1073/pnas.0601184103.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.  https://doi.org/10.1038/nature10242.CrossRefPubMedGoogle Scholar
  29. 29.
    Toumazou C, Premanode B, Shepherd L. Signal processing circuit comprising ion sensitive field effect transistor and method of monitoring a property of a fluid. June 2005. https://patents.google.com/patent/US7649358.
  30. 30.
    Mellmann A, Harmsen D, Cummings CA, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One. 2011;6(7):e22751.  https://doi.org/10.1371/journal.pone.0022751.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rohde H, Qin J, Cui Y, et al. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med. 2011;365(8):718–24.  https://doi.org/10.1056/NEJMoa1107643.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–11.  https://doi.org/10.1056/NEJMoa1306555.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mamanova L, Coffey AJ, Scott CE, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7(2):111–8.  https://doi.org/10.1038/nmeth.1419.CrossRefPubMedGoogle Scholar
  34. 34.
    Luo W, Zhang C, Jiang Y-H, Brouwer CR. Systematic reconstruction of autism biology from massive genetic mutation profiles. Sci Adv. 2018;4(4):e1701799.  https://doi.org/10.1126/sciadv.1701799.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096–101.  https://doi.org/10.1073/pnas.0910672106.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018.  https://doi.org/10.1016/j.tig.2018.05.008.CrossRefGoogle Scholar
  37. 37.
    Jain M, Koren S, Miga KH, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.  https://doi.org/10.1038/nbt.4060.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jain M, Tyson JR, Loose M, et al. MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry. F1000Res. 2017;6:760.  https://doi.org/10.12688/f1000research.11354.1.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.  https://doi.org/10.1126/science.1258096.CrossRefGoogle Scholar
  40. 40.
    Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 2015;526(7571):55–61.  https://doi.org/10.1038/nature15386.CrossRefGoogle Scholar
  41. 41.
    Xue H-Y, Ji L-J, Gao A-M, et al. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet. 2016;53:91–7.  https://doi.org/10.1136/jmedgenet-2015-103409.CrossRefPubMedGoogle Scholar
  42. 42.
    Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017;8:14454.  https://doi.org/10.1038/ncomms14454.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yao S, He Z, Chen C. CRISPR/Cas9-mediated genome editing of epigenetic factors for cancer therapy. Hum Gene Ther. 2015;26(7):463–71.  https://doi.org/10.1089/hum.2015.067.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang Z, Pan Q, Gendron P, et al. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016;15(3):481–9.  https://doi.org/10.1016/j.celrep.2016.03.042.CrossRefPubMedGoogle Scholar
  45. 45.
    Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio J-J. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol. 2014;32(8):819–21.  https://doi.org/10.1038/nbt.2925.CrossRefPubMedGoogle Scholar
  46. 46.
    Lyon J. Bioethics panels open door slightly to germline gene editing. JAMA. 2017;318(17):1639.  https://doi.org/10.1001/jama.2017.13962.CrossRefPubMedGoogle Scholar
  47. 47.
    De Miguel Beriain I. Legal issues regarding gene editing at the beginning of life: an EU perspective. Regen Med. 2017;12(6):669–79.  https://doi.org/10.2217/rme-2017-0033.CrossRefPubMedGoogle Scholar
  48. 48.
    Belvedere R, Saggese P, Pessolano E, et al. miR-196a is able to restore the aggressive phenotype of annexin A1 knock-out in pancreatic cancer cells by CRISPR/Cas9 genome editing. Int J Mol Sci. 2018;19(7):1967.  https://doi.org/10.3390/ijms19071967.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Adams AB, Kim SC, Martens GR, et al. Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann Surg. 2018.  https://doi.org/10.1097/SLA.0000000000002977.CrossRefGoogle Scholar
  50. 50.
    Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc. 2007;2(8):1849–61.  https://doi.org/10.1038/nprot.2007.249.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lane D, Prentki P, Chandler M. Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev. 1992;56(4):509–28. http://www.ncbi.nlm.nih.gov/pubmed/1480106. Accessed 26 July 2018PubMedPubMedCentralGoogle Scholar
  52. 52.
    Cai Y-H, Huang H. Advances in the study of protein-DNA interaction. Amino Acids. 2012;43(3):1141–6.  https://doi.org/10.1007/s00726-012-1377-9.CrossRefPubMedGoogle Scholar
  53. 53.
    Brenowitz M, Senear DF, Shea MA, Ackers GK. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol. 1986;130:132–81. http://www.ncbi.nlm.nih.gov/pubmed/3773731. Accessed 26 July 2018CrossRefGoogle Scholar
  54. 54.
    Orlando V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci. 2000;25(3):99–104. http://www.ncbi.nlm.nih.gov/pubmed/10694875. Accessed 26 July 2018CrossRefGoogle Scholar
  55. 55.
    Horak CE, Snyder M. ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol. 2002;350:469–83. http://www.ncbi.nlm.nih.gov/pubmed/12073330. Accessed 26 July 2018CrossRefGoogle Scholar
  56. 56.
    Robertson G, Hirst M, Bainbridge M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods. 2007;4(8):651–7.  https://doi.org/10.1038/nmeth1068.CrossRefPubMedGoogle Scholar
  57. 57.
    Brown D, Brown J, Kang C, Gold L, Allen P. Single-stranded RNA recognition by the bacteriophage T4 translational repressor, regA. J Biol Chem. 1997;272(23):14969–74. http://www.ncbi.nlm.nih.gov/pubmed/9169470. Accessed 26 July 2018CrossRefGoogle Scholar
  58. 58.
    Voigtländer B. Scanning probe microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015.  https://doi.org/10.1007/978-3-662-45240-0.CrossRefGoogle Scholar
  59. 59.
    Raigoza AF, Dugger JW, Webb LJ. Review: Recent advances and current challenges in scanning probe microscopy of biomolecular surfaces and interfaces. ACS Appl Mater Interfaces. 2013;5(19):9249–61.  https://doi.org/10.1021/am4018048.CrossRefPubMedGoogle Scholar
  60. 60.
    Hoa XD, Kirk AG, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron. 2007;23(2):151–60.  https://doi.org/10.1016/j.bios.2007.07.001.CrossRefPubMedGoogle Scholar
  61. 61.
    Drescher DG, Ramakrishnan NA, Drescher MJ. Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods Mol Biol. 2009;493:323–43.  https://doi.org/10.1007/978-1-59745-523-7_20.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Doležel J, Vrána J, Safář J, Bartoš J, Kubaláková M, Simková H. Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics. 2012;12(3):397–416.  https://doi.org/10.1007/s10142-012-0293-0.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Brown TA. Genomes 3. New York: Garland Science Pub.; 2007.Google Scholar
  64. 64.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. http://www.ncbi.nlm.nih.gov/pubmed/8252621. Accessed 26 July 2018CrossRefGoogle Scholar
  65. 65.
    Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006;442(7099):199–202.  https://doi.org/10.1038/nature04917.CrossRefPubMedGoogle Scholar
  66. 66.
    Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006;442(7099):203–7.  https://doi.org/10.1038/nature04916.CrossRefPubMedGoogle Scholar
  67. 67.
    Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72.  https://doi.org/10.1073/pnas.0904715106.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A. 1977;74(12):5350–4. http://www.ncbi.nlm.nih.gov/pubmed/414220. Accessed 26 July 2018CrossRefGoogle Scholar
  69. 69.
    Dvorák Z, Pascussi J-M, Modrianský M. Approaches to messenger RNA detection – comparison of methods. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003;147(2):131–5. http://www.ncbi.nlm.nih.gov/pubmed/15037893. Accessed 26 July 2018CrossRefGoogle Scholar
  70. 70.
    Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A. 1969;63(2):378–83. http://www.ncbi.nlm.nih.gov/pubmed/4895535. Accessed 26 July 2018CrossRefGoogle Scholar
  71. 71.
    Jin L, Lloyd RV. In situ hybridization: methods and applications. J Clin Lab Anal. 1997;11(1):2–9. http://www.ncbi.nlm.nih.gov/pubmed/9021518. Accessed 26 July 2018CrossRefGoogle Scholar
  72. 72.
    Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70. http://www.ncbi.nlm.nih.gov/pubmed/7569999. Accessed 26 July 2018CrossRefGoogle Scholar
  73. 73.
    Churchill GA. Fundamentals of experimental design for cDNA microarrays. Nat Genet. 2002;32(Suppl):490–5.  https://doi.org/10.1038/ng1031.CrossRefPubMedGoogle Scholar
  74. 74.
    Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. 1994;91(11):5022–6. http://www.ncbi.nlm.nih.gov/pubmed/8197176. Accessed 26 July 2018CrossRefGoogle Scholar
  75. 75.
    Nuwaysir EF, Huang W, Albert TJ, et al. Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 2002;12(11):1749–55.  https://doi.org/10.1101/gr.362402.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559–82.  https://doi.org/10.1038/nprot.2006.236.CrossRefPubMedGoogle Scholar
  77. 77.
    VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44(5):619–26.  https://doi.org/10.2144/000112776.CrossRefPubMedGoogle Scholar
  78. 78.
    Nomellini V, Kennedy GD. Modern techniques for protein assessment. In: Kibbe MR, LeMaire SA, editors. Success in academic surgery: basic science. 2014th ed. London: Springer; 2013.Google Scholar
  79. 79.
    Morin R, Bainbridge M, Fejes A, et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques. 2008;45(1):81–94.  https://doi.org/10.2144/000112900.CrossRefPubMedGoogle Scholar
  80. 80.
    Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015(11):951–69.  https://doi.org/10.1101/pdb.top084970.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Maher CA, Kumar-Sinha C, Cao X, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;458(7234):97–101.  https://doi.org/10.1038/nature07638.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7(8):1534–50. http://www.ncbi.nlm.nih.gov/pubmed/22836135. Accessed 26 July 2018CrossRefGoogle Scholar
  83. 83.
    Wilhelm BT, Landry J-R. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods. 2009;48(3):249–57.  https://doi.org/10.1016/j.ymeth.2009.03.016.CrossRefPubMedGoogle Scholar
  84. 84.
    Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015;58(4):610–20.  https://doi.org/10.1016/j.molcel.2015.04.005.CrossRefPubMedGoogle Scholar
  85. 85.
    Chen X, Sun Y-C, Church GM, Lee JH, Zador AM. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Res. 2018;46(4):e22.  https://doi.org/10.1093/nar/gkx1206.CrossRefPubMedGoogle Scholar
  86. 86.
    Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–8.  https://doi.org/10.1038/nmeth.4380.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Quackenbush J. Microarray data normalization and transformation. Nat Genet. 2002;32(Suppl):496–501.  https://doi.org/10.1038/ng1032.CrossRefPubMedGoogle Scholar
  88. 88.
    Faith JJ, Hayete B, Thaden JT, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5(1):e8.  https://doi.org/10.1371/journal.pbio.0050008.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7. http://www.ncbi.nlm.nih.gov/pubmed/10521349. Accessed 26 July 2018CrossRefGoogle Scholar
  90. 90.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995.  https://doi.org/10.2307/2346101.
  91. 91.
    Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5.  https://doi.org/10.1073/pnas.1530509100.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 2009;37(Database):D885–90.  https://doi.org/10.1093/nar/gkn764.CrossRefPubMedGoogle Scholar
  93. 93.
    Dai M, Wang P, Boyd AD, et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 2005;33(20):e175.  https://doi.org/10.1093/nar/gni179.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.  https://doi.org/10.1073/pnas.0506580102.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Mootha VK, Lindgren CM, Eriksson K-F, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.  https://doi.org/10.1038/ng1180.CrossRefPubMedGoogle Scholar
  96. 96.
    Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.  https://doi.org/10.1126/science.1132939.CrossRefGoogle Scholar
  97. 97.
    Demidenko E. Microarray enriched gene rank. BioData Min. 2015;8(1):2.  https://doi.org/10.1186/s13040-014-0033-1.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Dennis G, Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3. http://www.ncbi.nlm.nih.gov/pubmed/12734009. Accessed 26 July 2018CrossRefGoogle Scholar
  99. 99.
    Legrain P, Aebersold R, Archakov A, et al. The human proteome project: current state and future direction. Mol Cell Proteomics. 2011;10(7):M111.009993.  https://doi.org/10.1074/mcp.M111.009993.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Alberts B, Wilson J, Hunt T. Molecular biology of the cell. New York: Garland Science; 2008.Google Scholar
  101. 101.
    Nomellini V, Brubaker AL, Mahbub S, Palmer JL, Gomez CR, Kovacs EJ. Dysregulation of neutrophil CXCR2 and pulmonary endothelial icam-1 promotes age-related pulmonary inflammation. Aging Dis. 2012;3(3):234–47. http://www.ncbi.nlm.nih.gov/pubmed/22724082. Accessed 29 July 2018PubMedPubMedCentralGoogle Scholar
  102. 102.
    Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24(22):2463–79.  https://doi.org/10.1101/gad.1971610.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Whitehead RH, Robinson PS. Establishment of conditionally immortalized epithelial cell lines from the intestinal tissue of adult normal and transgenic mice. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G455–60.  https://doi.org/10.1152/ajpgi.90381.2008.CrossRefPubMedGoogle Scholar
  104. 104.
    Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 1999;59(17):4175–9. http://www.ncbi.nlm.nih.gov/pubmed/10485449. Accessed 26 July 2018PubMedGoogle Scholar
  105. 105.
    Lucey BP, Nelson-Rees WA, Hutchins GM. Henrietta Lacks, HeLa cells, and cell culture contamination. Arch Pathol Lab Med. 2009;133(9):1463–7.  https://doi.org/10.1043/1543-2165-133.9.1463.CrossRefPubMedGoogle Scholar
  106. 106.
    Strachan T, Read AP. Human molecular genetics. New York: Garland Science; 2011.Google Scholar
  107. 107.
    PRO homogenizer applications. https://proscientific.com/homogenizer-applications. Accessed 26 July 2018.
  108. 108.
    Burgess RR. Protein precipitation techniques. Methods Enzymol. 2009;463:331–42.  https://doi.org/10.1016/S0076-6879(09)63020-2.CrossRefPubMedGoogle Scholar
  109. 109.
    Liu J, Andya JD, Shire SJ. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J. 2006;8(3):E580–9.  https://doi.org/10.1208/aapsj080367.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Addo RT, Davis K, Ubale R, Owen JS, Watkins EB. Development and validation of a UPLC method for rapid and simultaneous analysis of proton pump inhibitors. AAPS PharmSciTech. 2015;16(1):30–4.  https://doi.org/10.1208/s12249-014-0207-7.CrossRefPubMedGoogle Scholar
  111. 111.
    Meleady P. 2D gel electrophoresis and mass spectrometry identification and analysis of proteins. Methods Mol Biol. 2011;784:123–37.  https://doi.org/10.1007/978-1-61779-289-2_9.CrossRefPubMedGoogle Scholar
  112. 112.
    Guo Y, Fu Z, Van Eyk JE. A proteomic primer for the clinician. Proc Am Thorac Soc. 2007;4(1):9–17.  https://doi.org/10.1513/pats.200608-156JG.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Issaq H, Veenstra T. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques. 2008;44(5):697–698, 700.  https://doi.org/10.2144/000112823.CrossRefPubMedGoogle Scholar
  114. 114.
    Monteoliva L, Albar JP. Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic. 2004;3(3):220–39. http://www.ncbi.nlm.nih.gov/pubmed/15642186. Accessed 26 July 2018CrossRefGoogle Scholar
  115. 115.
    McLeod HL, Murray GI. Tumour markers of prognosis in colorectal cancer. Br J Cancer. 1999;79(2):191–203.  https://doi.org/10.1038/sj.bjc.6690033.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Panteghini M, Bonora R, Pagani F. Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate. Ann Clin Biochem. 2001;38(Pt 4):365–70.  https://doi.org/10.1258/0004563011900876.CrossRefPubMedGoogle Scholar
  117. 117.
    Melanson SEF, Tanasijevic MJ, Jarolim P. Cardiac troponin assays: a view from the clinical chemistry laboratory. Circulation. 2007;116(18):e501–4.  https://doi.org/10.1161/CIRCULATIONAHA.107.722975.CrossRefPubMedGoogle Scholar
  118. 118.
    Lubec G, Afjehi-Sadat L. Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev. 2007;107(8):3568–84.  https://doi.org/10.1021/cr068213f.CrossRefPubMedGoogle Scholar
  119. 119.
    Herosimczyk A, Dejeans N, Sayd T, Ozgo M, Skrzypczak WF, Mazur A. Plasma proteome analysis: 2D gels and chips. J Physiol Pharmacol. 2006;57(Suppl 7):81–93. http://www.ncbi.nlm.nih.gov/pubmed/17228097. Accessed 26 July 2018PubMedGoogle Scholar
  120. 120.
    Dressler F, Whalen JA, Reinhardt BN, Steere AC. Western blotting in the serodiagnosis of Lyme disease. J Infect Dis. 1993;167(2):392–400. http://www.ncbi.nlm.nih.gov/pubmed/8380611. Accessed 26 July 2018CrossRefGoogle Scholar
  121. 121.
    Franco-Paredes C, Tellez I, del Rio C. Rapid HIV testing: a review of the literature and implications for the clinician. Curr HIV/AIDS Rep. 2006;3(4):169–75. http://www.ncbi.nlm.nih.gov/pubmed/17032576. Accessed 26 July 2018CrossRefGoogle Scholar
  122. 122.
  123. 123.
    Nomellini V, Faunce DE, Gomez CR, Kovacs EJ. An age-associated increase in pulmonary inflammation after burn injury is abrogated by CXCR2 inhibition. J Leukoc Biol. 2008;83(6):1493–501.  https://doi.org/10.1189/jlb.1007672.CrossRefPubMedGoogle Scholar
  124. 124.
    Lee JS, Cella M, McDonald KG, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol. 2011;13(2):144–51.  https://doi.org/10.1038/ni.2187.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Caro-Oleas JL, González-Escribano MF, Gentil-Govantes MÁ, et al. Clinical relevance of anti-HLA donor-specific antibodies detected by Luminex assay in the development of rejection after renal transplantation. Transplantation. 2012;94(4):338–44.  https://doi.org/10.1097/TP.0b013e31825ace2c.CrossRefPubMedGoogle Scholar
  126. 126.
    Pickering JW, Martins TB, Schroder MC, Hill HR. Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for auantitation of antibodies to tetanus, diphtheria, and Haemophilus influenzae Type b. Clin Diagn Lab Immunol. 2002;9(4):872–6.  https://doi.org/10.1128/CDLI.9.4.872-876.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983;65(1–2):109–21. http://www.ncbi.nlm.nih.gov/pubmed/6361139. Accessed 26 July 2018CrossRefGoogle Scholar
  128. 128.
    Dittrich M, Lehmann PV. Statistical analysis of ELISPOT assays. Methods Mol Biol. 2012;792:173–83.  https://doi.org/10.1007/978-1-61779-325-7_14.CrossRefPubMedGoogle Scholar
  129. 129.
    Slota M, Lim J-B, Dang Y, Disis ML. ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines. 2011;10(3):299–306.  https://doi.org/10.1586/erv.10.169.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Tuchin VV, Tárnok A, Zharov VP. In vivo flow cytometry: a horizon of opportunities. Cytometry A. 2011;79(10):737–45.  https://doi.org/10.1002/cyto.a.21143.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Xu X, Yang Z, Liu Q, Wang Y. In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts. Mol Ther. 2010;18(4):835–42.  https://doi.org/10.1038/mt.2010.3.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Ray P. Multimodality molecular imaging of disease progression in living subjects. J Biosci. 2011;36(3):499–504. http://www.ncbi.nlm.nih.gov/pubmed/21799261. Accessed 26 July 2018CrossRefGoogle Scholar
  133. 133.
    Tavaré JM, Fletcher LM, Welsh GI. Using green fluorescent protein to study intracellular signalling. J Endocrinol. 2001;170(2):297–306. http://www.ncbi.nlm.nih.gov/pubmed/11479127. Accessed 26 July 2018CrossRefGoogle Scholar
  134. 134.
    Phizicky EM, Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol Rev. 1995;59(1):94–123. http://www.ncbi.nlm.nih.gov/pubmed/7708014. Accessed 26 July 2018PubMedPubMedCentralGoogle Scholar
  135. 135.
    Wärnmark A, Treuter E, Wright APH, Gustafsson J-A. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol. 2003;17(10):1901–9.  https://doi.org/10.1210/me.2002-0384.CrossRefPubMedGoogle Scholar
  136. 136.
    Dwane S, Kiely PA. Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs. 2011;2(5):247–59.  https://doi.org/10.4161/bbug.2.5.17844.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Sun Y, Wallrabe H, Seo S-A, Periasamy A. FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth. Chemphyschem. 2011;12(3):462–74.  https://doi.org/10.1002/cphc.201000664.CrossRefPubMedGoogle Scholar
  138. 138.
    Zaccolo M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res. 2004;94(7):866–73.  https://doi.org/10.1161/01.RES.0000123825.83803.CD.CrossRefPubMedGoogle Scholar
  139. 139.
    Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003;160(5):629–33.  https://doi.org/10.1083/jcb.200210140.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Hiraoka Y, Shimi T, Haraguchi T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct Funct. 2002;27(5):367–74. http://www.ncbi.nlm.nih.gov/pubmed/12502891. Accessed 26 July 2018CrossRefGoogle Scholar
  141. 141.
    Lakowicz JR, Ray K, Chowdhury M, et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst. 2008;133(10):1308–46.  https://doi.org/10.1039/b802918k.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations