Advertisement

Maintaining an Effective Lab Notebook and Data Integrity

  • Andrew J. MurphyEmail author
Chapter
Part of the Success in Academic Surgery book series (SIAS)

Abstract

Efficient, organized, and detailed data maintenance are the cornerstones of a successful laboratory. Furthermore, institutional and federal requirements mandate proper maintenance, documentation, and dissemination of experimental data in a way that is rigorous and reproducible. The complexity of data generated in the modern laboratory setting presents a significant challenge to these principles of proper record keeping and data integrity. This chapter will focus on the elements of the scientific method, data maintenance, and paper and electronic record keeping that can be used to facilitate successful laboratory operations for the surgeon-scientist conducting basic research. In addition, there is recent increased emphasis on measures to ensure experimental rigor and reproducibility supported by the scientific community and National Institutes of Health. This chapter will introduce the surgeon-scientist to the critical aspects of these requirements to ensure compliance with grant submission guidelines and common author instructions for manuscript submission.

Keywords

Notebook Laboratory Electronic Data integrity Rigor Reproducibility Data archiving 

References

  1. 1.
    Schreier AA, Wilson K, Resnik D. Academic research record-keeping: best practices for individuals, group leaders, and institutions. Acad Med. 2006;81(1):42–7.CrossRefGoogle Scholar
  2. 2.
    Rachinsky T, Sullivan C, Ghosh S, Resnick DS, Burton C, Armstrong M, Hanish JP, Sklan A. First-to-invent versus first-to-file: impact of the AIA. Pharm Pat Anal. 2014;3(4):353–9.  https://doi.org/10.4155/ppa.14.28.CrossRefPubMedGoogle Scholar
  3. 3.
    Giles J. Going paperless: the digital lab. Nature. 2012;481(7382):430–1.  https://doi.org/10.1038/481430a.CrossRefPubMedGoogle Scholar
  4. 4.
    Dirnagl U, Przesdzing I. A pocket guide to electronic laboratory notebooks in the academic life sciences. F1000Res. 2016;5:2.  https://doi.org/10.12688/f1000research.7628.1.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guerrero S, Dujardin G, Cabrera-Andrade A, Paz YMC, Indacochea A, Ingles-Ferrandiz M, Nadimpalli HP, Collu N, Dublanche Y, De Mingo I, Camargo D. Analysis and implementation of an electronic laboratory notebook in a biomedical research institute. PLoS One. 2016;11(8):e0160428.  https://doi.org/10.1371/journal.pone.0160428.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hull C. Editorial: Laboratory Information Management Systems (LIMS). Comb Chem High Throughput Screen. 2011;14(9):741.CrossRefGoogle Scholar
  7. 7.
    U.S. Food and Drug Administration CFR – Code of Federal Regulations Title 21. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=820. Accessed 30 July 2018.
  8. 8.
    Macneil R. The benefits of integrated systems for managing both samples and experimental data: an opportunity for labs in universities and government research institutions to lead the way. Autom Exp. 2011;3(1):2.  https://doi.org/10.1186/1759-4499-3-2.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kanza S, Willoughby C, Gibbins N, Whitby R, Frey JG, Erjavec J, Zupancic K, Hren M, Kovac K. Electronic lab notebooks: can they replace paper? J Cheminform. 2017;9(1):31.  https://doi.org/10.1186/s13321-017-0221-3.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    The database of Genotypes and Phenotypes (dbGaP). https://www.ncbi.nlm.nih.gov/gap. Accessed 18 July 2018.
  11. 11.
    Gene Expression Omnibus (GEO) database. https://www.ncbi.nlm.nih.gov/geo/. Accessed 18 July 2018.
  12. 12.
    The Jackson Laboratory: donate a strain. https://www.jax.org/jax-mice-and-services/cryo-and-strain-donation/donate-a-strain. Accessed 18 July 2018.
  13. 13.
    ATCC deposit services. https://www.atcc.org/en/Services/Deposit_Services.aspx. Accessed 18 July 2018.
  14. 14.
    NIH Data Sharing Policy and Implementation Guidance. 2003. https://grants.nih.gov/grants/policy/data_sharing/data_sharing_guidance.htm. Accessed 18 July 2018.
  15. 15.
    Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016;533(7604):452–4.  https://doi.org/10.1038/533452a.CrossRefPubMedGoogle Scholar
  16. 16.
    McNutt M. Journals unite for reproducibility. Science. 2014;346(6210):679.CrossRefGoogle Scholar
  17. 17.
    Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, Finkelstein R, Fisher M, Gendelman HE, Golub RM, Goudreau JL, Gross RA, Gubitz AK, Hesterlee SE, Howells DW, Huguenard J, Kelner K, Koroshetz W, Krainc D, Lazic SE, Levine MS, Macleod MR, McCall JM, Moxley RT 3rd, Narasimhan K, Noble LJ, Perrin S, Porter JD, Steward O, Unger E, Utz U, Silberberg SD. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490(7419):187–91.  https://doi.org/10.1038/nature11556.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    National Institutes of Health Policy and Compliance: Rigor and Reproducibility. 2018. https://grants.nih.gov/reproducibility/index.htm. Accessed 19 July 2018.
  19. 19.
    Tannenbaum C, Schwarz JM, Clayton JA, de Vries GJ, Sullivan C. Evaluating sex as a biological variable in preclinical research: the devil in the details. Biol Sex Differ. 2016;7:13.  https://doi.org/10.1186/s13293-016-0066-x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509(7500):282–3.CrossRefGoogle Scholar
  21. 21.
    Almeida JL, Cole KD, Plant AL. Standards for cell line authentication and beyond. PLoS Biol. 2016;14(6):e1002476.  https://doi.org/10.1371/journal.pbio.1002476.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lorsch JR, Collins FS, Lippincott-Schwartz J. Cell biology. Fixing problems with cell lines. Science. 2014;346(6216):1452–3.  https://doi.org/10.1126/science.1259110.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Uphoff CC, Drexler HG. Detection of mycoplasma contamination in cell cultures. Curr Protoc Mol Biol. 2014;106:28.4.1–14.  https://doi.org/10.1002/0471142727.mb2804s106.CrossRefGoogle Scholar
  24. 24.
    Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D. Antibody validation. Biotechniques. 2010;48(3):197–209.  https://doi.org/10.2144/000113382.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of SurgerySt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Division of Pediatric Surgery, Department of SurgeryUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations