Advertisement

Animal Models in Surgical Research

  • Morgan L. Hennessy
  • Allan M. GoldsteinEmail author
Chapter
Part of the Success in Academic Surgery book series (SIAS)

Abstract

For centuries, scientists have used model organisms to answer fundamental questions about biology. Model organisms ranging from yeast to worms, fruit flies, rodents, and primates represent basic tools for biomedical research and are critically important in translational research and advancing our knowledge of human disease. For surgeon-scientists, modeling the conditions that affect our patients is essential to elucidating the underlying pathophysiology and to discovering novel therapies. Familiarity with the various model organisms available and their respective strengths is therefore essential so that the best system is selected to answer a scientific question. Here we present a selection of model organisms and the uses, drawbacks, and practical aspects thereof to provide a brief review for the surgeon-scientist.

Keywords

Animal models Translational research Zebrafish Swine Chicken Primates Sheep Basic science 

Notes

Acknowledgments

Funding source: AMG is supported by the National Institutes of Health (R01DK103785).

Conflict of interest:  The authors have no financial conflicts of interest to disclose.

References

  1. 1.
    Stern CD. The chick: a great model system becomes even greater. Dev Cell. 2005;8:9–17.PubMedGoogle Scholar
  2. 2.
    Sauka-Spengler T, Barembaum M. Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol. 2008;87:237–56.CrossRefGoogle Scholar
  3. 3.
    Goldstein AM, Nandor N. A bird’s eye view of enteric nervous system development: lessons from the avian embryo. Pediatr Res. 2008;64:326–33.CrossRefGoogle Scholar
  4. 4.
    Ribatti D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Biol. 2008;270:181–224.CrossRefGoogle Scholar
  5. 5.
    Kain KH, Miller JWI, Jones-Paris CR, Thomason RT, Lewis KD, Bader DM, Barnett JV, Zijlstra A. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn. 2014;243:216–28.CrossRefGoogle Scholar
  6. 6.
    Palmer TD, Lewis J, Zijlstra A. Quantitative analysis of cancer metastasis using an avian embryo model. J Vis Exp. 2011;51:pii:2815. http://www.jove.com/details.php?id=2815Google Scholar
  7. 7.
    Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A, Bikfalvi A. Accessing key steps of human tumor progression in vivo by using an avian embryo model. PNAS. 2005;102:1643–8.CrossRefGoogle Scholar
  8. 8.
    Shin JT, Fishman MC. From zebrafish to human: modular medical models. Annu Rev Genomics Hum Genet. 2002;3:311–40.CrossRefGoogle Scholar
  9. 9.
    Lin C-Y, Chiang C-Y, Tsai H-J. Zebrafish and medaka: new model organisms for modern biomedical research. J Biomed Sci. 2016;23:19.CrossRefGoogle Scholar
  10. 10.
    Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet. 2012;46:397–418.CrossRefGoogle Scholar
  11. 11.
    Mork L, Crump G. Zebrafish craniofacial development: a window into early patterning. Curr Top Dev Biol. 2015;115:235–69.CrossRefGoogle Scholar
  12. 12.
    Duncan KM, Mukherjee K, Cornell RA, Liao EC. Zebrafish models of orofacial clefts. Dev Dyn. 2017;246:897–914.CrossRefGoogle Scholar
  13. 13.
    Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005;15:249–54.CrossRefGoogle Scholar
  14. 14.
    Dang M, Fogley R, Zon L. Cancer and zebrafish: mechanisms, techniques, and models: chemical genetics. Adv Exp Med Biol. 2016;916:103–24.CrossRefGoogle Scholar
  15. 15.
    MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14:721–31.CrossRefGoogle Scholar
  16. 16.
    Meehan TF, et al. Disease model discovery from 3328 gene knockouts by The International Mouse Phenotyping Consortium. Nat Genet. 2017;49(8):1231–8.CrossRefGoogle Scholar
  17. 17.
    Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.CrossRefGoogle Scholar
  18. 18.
    Dymecki SM, Ray RS, Kim JC. Mapping cell fate and function using recombinase-based intersectional strategies. Methods Enzymol. 2010;477:183–213.CrossRefGoogle Scholar
  19. 19.
    Liu Q, Qiu J, Liang M, Golinksi J, van Leyen K, Jung JE, You Z, Lo EH, Degterev A, Whalen MJ. Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis. 2014;5(2):e1084.CrossRefGoogle Scholar
  20. 20.
    Frohman HA, Rychahou PG, Li J, Gan T, Evers BM. Development of murine bariatric surgery models: lessons learned. J Surg Res. 2018;229:302–10.CrossRefGoogle Scholar
  21. 21.
    Lee Y, Deelman TE, Chen Keyue, Lin DS, Tavakkoli A, Karp JM. Therapeutic luminal coating of the intestine. Nat Mater. 2018.  https://doi.org/10.1038/s41563-018-0106-5.CrossRefGoogle Scholar
  22. 22.
    Fink MP. Animal models of sepsis. Virulence. 2014;5(1):143–53.CrossRefGoogle Scholar
  23. 23.
    Mollard S, Mousseau Y, Baaj Y, Richard L, Cook-Moreau J, Monteil J, Funalot B, Sturtz FG. How can grafted breast cancer models be optimized? Cancer Biol Ther. 2011;12(10):855–64.CrossRefGoogle Scholar
  24. 24.
    Kohli R, Setchell K, Kirby M, Myronovych A, Ryan KK, Ibrahim SH, Berger J, Smith K, Toure M, Woods SC, Seely RJ. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery. Endocrinology. 2013;154(7):2341–51.CrossRefGoogle Scholar
  25. 25.
    Matsubara K, Yokota S, Ono Y, Fukumitsu K, Handa K, Guzman-Lepe J, Perez-Gutierrez AR, Yagi H, Fox IJ, Murase N, Soto-Gutierrez A. Surgical model of auxiliary partial liver transplantation in the rat. Protoc Exchange. 2015.  https://doi.org/10.1038/protex.2015.121.
  26. 26.
    Zhang Z, Schuler T, Zupancic M, Wietfgrefe S, Staskus KA, Reimann KA, Reinhart TA, Rogan M, Cavert W, Miller CJ, Veazey RS, Notermans D, Little S, Danner SA, Richman DD, Havlir D, Wong J, Jordan HL, Schacker TW, Racz P, Tenner-Racz K, Letvin NL, Wolinksy S, Haase AT. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286(5443):1353–7.CrossRefGoogle Scholar
  27. 27.
    Lankau EW, Turner PV, Mullan RJ, Galland GG. Use of nonhuman primates in research in North America. J Am Assoc Lab Anim Sci. 2014;53(3):278–82.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, ‘t Hart BA, Hopkins WD, Hu S, Miller SA, Nader MA, Nathanielsz PW, Rogers J, Shively CA, Voytko ML. Why primate models matter. Am J Primatol. 2014;76(9):801–27.CrossRefGoogle Scholar
  29. 29.
    Hotta K, Oura T, Dehnadi A, Boskovic S, Matsunami M, Rosales I, Smith RN, Colvin RB, Cosimi AB, Kawai T. Long-term nonhuman primate renal allograft survival without ongoing immunosuppression in recipients of delayed donor bone marrow transplantation. Transplantation. 2018;102(4):e128–36.CrossRefGoogle Scholar
  30. 30.
    Vagefi PA, Shah JA, Sachs DH. Progress towards inducing tolerance of pig-to-primate xenografts. Int J Surg. 2015;23:291–5.CrossRefGoogle Scholar
  31. 31.
    Katnani HA, Patel SR, Kwon CS, Abdel-Aziz S, Gale JT, Eskandar EN. Temporally coordinated deep brain stimulation in the dorsal and ventral striatum synergistically enhances associative learning. Sci Rep. 2016;6:18806.  https://doi.org/10.1038/srep18806.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wichmann T, Bergman H, DeLong MR. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. J Neural Transm. 2018;125(3):419–30.CrossRefGoogle Scholar
  33. 33.
    Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V. Efficacy of the porcine species in biomedical research. Front Genet. 2015;6:293.  https://doi.org/10.3389/fgene.2015.00293.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J. 2015;56(1):127–38.CrossRefGoogle Scholar
  35. 35.
    Chan QE, Harvey JG, Graf NS, Godfrey C, Holland AJ. The correlation between time to skin grafting and hypertrophic scarring following an acute contact burn in a porcine model. J Burn Care Res. 2012;33:e43–8.  https://doi.org/10.1097/BCR.0b013e31823356ce.CrossRefPubMedGoogle Scholar
  36. 36.
    Madariaga ML, Michel SG, Villani V, LaMuraglia GM, Sihag S, Gottschall J, Farkash EA, Shimizu A, Allan JS, Sachs DH, Yamada K, Madsen JC. Induction of cardiac allograft tolerance across a full MHC barrier in miniature swine by donor kidney cotransplantation. Am J Transplant. 2013;13(10):2558–66.CrossRefGoogle Scholar
  37. 37.
    Sachs DH. Transplantation tolerance through mixed chimerism: From allo to xeno. Xenotransplantation. 2018;25(3):e12420.  https://doi.org/10.1111/xen.12420.CrossRefPubMedGoogle Scholar
  38. 38.
    Pareja JC, Keely K, Duhaime AC, Dodge CP. Modeling pediatric brain trauma: piglet model of controlled cortical impact. Methods Mol Biol. 2016;1462:345–56.CrossRefGoogle Scholar
  39. 39.
    Guyette JP, Gilpin SE, Charest JM, Tapias LF, Ren X, Ott HC. Perfusion decellularization of whole organs. Nat Protoc. 2014;9:1451–68.CrossRefGoogle Scholar
  40. 40.
    Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao H, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Guell M, Church GM, Yang L. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357(6357):1303–7.CrossRefGoogle Scholar
  41. 41.
    Joyeux L, De Bie F, Danzer E, Van Mieghem T, Flake AW, Deprest J. Safety and efficacy of fetal surgery techniques to close a spina bifida defect in the fetal lamb model: a systematic review. Prenat Diagn. 2018;38:231–42.CrossRefGoogle Scholar
  42. 42.
    Chiu PP. New insights into congenital diaphragmatic hernia – a surgeon’s introduction to CDH animal models. Front Pediatr. 2014;2:36.CrossRefGoogle Scholar
  43. 43.
    Partridge EA, Davey MG, Hornick MA, McGovern PE, Mejaddam AY, Vrecenak JD, Mesas-Burgos C, Olive A, Caskey RC, Weiland TR, Han J, Schupper AJ, Connelly JT, Dysart KC, Rychik J, Hedrick HL, Peranteau WH, Flake AW. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun. 2017;8:15112.CrossRefGoogle Scholar
  44. 44.
    Schleimer K, Jalaie H, Afify M, Woitok A, Barbati ME, Hoeft K, Jacobs M, Tolba RH, Steitz J. Sheep models for evaluation of novel patch and prosthesis material in vascular surgery: tips and tricks to avoid possible pitfalls. Acta Vet Scand. 2018;60:42.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surgery, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Department of Pediatric Surgery, MassGeneral Hospital for ChildrenHarvard Medical SchoolBostonUSA

Personalised recommendations