Skip to main content

Gene-Editing Techniques

  • Chapter
  • First Online:
Success in Academic Surgery: Basic Science

Part of the book series: Success in Academic Surgery ((SIAS))

  • 600 Accesses

Abstract

This chapter will broadly cover the newest genome editing technology, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated system (Cas), as a critical tool for a modern research laboratory. Multiplex gene mutagenesis, tissue-specific gene disruption, DNA insertions, transcriptional activation, transcriptional repression, megabase-sized deletions, translocations, and genetic screens are all possible with CRISPR/Cas technology. How CRISPR-genome editing works, its applications, and considerations for best use will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10:957–63. https://doi.org/10.1038/nmeth.2649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seruggia D, Montoliu L. The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res. 2014;23:707–16. https://doi.org/10.1007/s11248-014-9823-y.

    Article  CAS  PubMed  Google Scholar 

  3. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21. https://doi.org/10.1126/science.1225829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308. https://doi.org/10.1038/nprot.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Motta BM, Pramstaller PP, Hicks AA, Rossini A. The impact of CRISPR/Cas9 technology on cardiac research: from disease modelling to therapeutic approaches. Stem Cells Int. 2017;2017:8960236. https://doi.org/10.1155/2017/8960236.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tsakraklides V, Brevnova E, Stephanopoulos G, Shaw AJ. Improved gene targeting through cell cycle synchronization. PLoS One. 2015;10:e0133434. https://doi.org/10.1371/journal.pone.0133434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang D, Scavuzzo MA, Chmielowiec J, Sharp R, Bajic A, Borowiak M. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep. 2016;6:21264. https://doi.org/10.1038/srep21264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Canny MD, et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol. 2018;36:95–102. https://doi.org/10.1038/nbt.4021.

    Article  CAS  PubMed  Google Scholar 

  9. Hess GT, Tycko J, Yao D, Bassik MC. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell. 2017;68:26–43. https://doi.org/10.1016/j.molcel.2017.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gehrke JM et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4199.

  11. Maekawa I, Kawamura T, Miyaka T. Chronic adult T-cell leukemia (ATL) complicating disseminated strongyloidiasis. Rinsho Ketsueki. 1988;29:64–7.

    CAS  PubMed  Google Scholar 

  12. Montalbano A, Canver MC, Sanjana NE. High-throughput approaches to pinpoint function within the noncoding genome. Mol Cell. 2017;68:44–59. https://doi.org/10.1016/j.molcel.2017.09.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kato T, et al. Creation of mutant mice with megabase-sized deletions containing custom-designed breakpoints by means of the CRISPR/Cas9 system. Sci Rep. 2017;7:59. https://doi.org/10.1038/s41598-017-00140-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vanoli F, Jasin M. Generation of chromosomal translocations that lead to conditional fusion protein expression using CRISPR-Cas9 and homology-directed repair. Methods. 2017;121–122:138–45. https://doi.org/10.1016/j.ymeth.2017.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jamal M, Khan FA, Da L, Habib Z, Dai J, Cao G. Keeping CRISPR/Cas on-Target. Curr Issues Mol Biol. 2016;20:1–12.

    PubMed  Google Scholar 

  16. Chen JS, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017;550:407–10. https://doi.org/10.1038/nature24268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V. Role of the CRISPR system in controlling gene transcription and monitoring cell fate (Review). Mol Med Rep. 2018;17:1421–7. https://doi.org/10.3892/mmr.2017.8099.

    Article  CAS  PubMed  Google Scholar 

  18. Kweon J, Kim Y. High-throughput genetic screens using CRISPR-Cas9 system Arch Pharm Res. 2018. https://doi.org/10.1007/s12272-018-1029-z.

    Article  CAS  PubMed  Google Scholar 

  19. Tschaharganeh DF, Lowe SW, Garippa RJ, Livshits G. Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J. 2016;283:3194–203. https://doi.org/10.1111/febs.13750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang L, et al. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One. 2015;10:e0120396. https://doi.org/10.1371/journal.pone.0120396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huijbers IJ. Generating genetically modified mice: a decision guide. Methods Mol Biol. 2017;1642:1–19. https://doi.org/10.1007/978-1-4939-7169-5_1.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freeman, K.W. (2019). Gene-Editing Techniques. In: Kennedy, G., Gosain, A., Kibbe, M., LeMaire, S. (eds) Success in Academic Surgery: Basic Science. Success in Academic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-14644-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14644-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14643-6

  • Online ISBN: 978-3-030-14644-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics