Skip to main content

Interpolation Between Hilbert Spaces

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

This note comprises a synthesis of certain results in the theory of exact interpolation between Hilbert spaces. In particular, we examine various characterizations of interpolation spaces and their relations to a number of results in operator theory and in function theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    More precisely, this is the quadratic version of the classical Peetre K-functional.

  2. 2.

    By “Löwner’s matrix,” we mean the unitary matrix denoted “V ” in Donoghue’s book [12], on p. 71. A more explicit construction of this matrix is found in [26], where it is called “T.”

References

  1. J. Agler, J.E. McCarthy, N. Young, Operator monotone functions and Löwner functions of several variables. Ann. Math. 176, 1783–1826 (2012)

    Article  MathSciNet  Google Scholar 

  2. Y. Ameur, The Calderón problem for Hilbert couples. Ark. Mat. 41, 203–231 (2003)

    Article  MathSciNet  Google Scholar 

  3. Y. Ameur, A new proof of Donoghue’s interpolation theorem. J. Funct. Space Appl. 3, 253–265 (2004)

    Article  MathSciNet  Google Scholar 

  4. Y. Ameur, A note on a theorem of Sparr. Math. Scand. 94, 155–160 (2004)

    Article  MathSciNet  Google Scholar 

  5. Y. Ameur, M. Cwikel, On the K-divisibility constant for some special, finite-dimensional Banach couples. J. Math. Anal. Appl. 360, 130–155 (2009)

    Article  MathSciNet  Google Scholar 

  6. N. Aronszajn, W. Donoghue, On exponential representations of functions. J. Anal. Math. 5, 321–388 (1956–57)

    Article  Google Scholar 

  7. J. Bergh, J. Löfström, Interpolation Spaces, an Introduction (Springer, Berlin, 1976)

    Book  Google Scholar 

  8. Y.A. Brudnyi, N.Y. Krugljak, Interpolation Functors and Interpolation Spaces (North Holland, Amsterdam, 1991)

    MATH  Google Scholar 

  9. A.P. Calderón, Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964)

    Article  MathSciNet  Google Scholar 

  10. A.P. Calderón, Spaces between L 1 and L and the theorem of Marcinkiewicz. Studia Math. 26, 273–299 (1966)

    Article  MathSciNet  Google Scholar 

  11. M. Cwikel, Monotonicity properties of interpolation spaces. Ark. Mat. 14, 213–236 (1976)

    Article  MathSciNet  Google Scholar 

  12. W. Donoghue, Monotone Matrix Functions and Analytic Continuation (Springer, Berlin, 1974)

    Book  Google Scholar 

  13. W. Donoghue, The theorems of Loewner and Pick. Israel J. Math. 4, 153–170 (1966)

    Article  MathSciNet  Google Scholar 

  14. W. Donoghue, The interpolation of quadratic norms. Acta Math. 118, 251–270 (1967)

    Article  MathSciNet  Google Scholar 

  15. M. Fan, Quadratic interpolation and some operator inequalities. J. Math. Inequal. 5, 413–427 (2011)

    Article  MathSciNet  Google Scholar 

  16. C. Foiaş, J.L. Lions, Sur certains théorèmes d’interpolation. Acta Sci. Math. 22, 269–282 (1961)

    MathSciNet  MATH  Google Scholar 

  17. C. Foiaş, S.C. Ong, P. Rosenthal, An interpolation theorem and operator ranges. Integr. Equ. Oper. Theory 10, 802–811 (1987)

    Article  MathSciNet  Google Scholar 

  18. P.R. Halmos, Quadratic interpolation. J. Oper. Theory 7, 303–305 (1982)

    MathSciNet  MATH  Google Scholar 

  19. F. Hansen, An operator inequality. Math. Ann. 246, 249–250 (1980)

    Article  MathSciNet  Google Scholar 

  20. F. Hansen, Selfadjoint means and operator monotone functions. Math. Ann. 256, 29–35 (1981)

    Article  MathSciNet  Google Scholar 

  21. O. Heinävaara, Local characterizations for the matrix monotonicity and convexity of fixed order. Proc. Am. math. Soc. 146, 3791–3799 (2018)

    Article  MathSciNet  Google Scholar 

  22. A. Korányi, On some classes of analytic functions of several variables. Trans. Am. Math. Soc. 101, 520–554 (1961)

    Article  MathSciNet  Google Scholar 

  23. F. Kraus, Über konvexe Matrixfunktionen. Math. Z. 41, 18–42 (1936)

    Article  MathSciNet  Google Scholar 

  24. J.L. Lions, Espaces intermédiaires entre espaces Hilbertiens et applications. Bull. Math. de la Soc. Sci. Math. Phys. de la R. P. R. 2, 419–432 (1958)

    MATH  Google Scholar 

  25. J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. 1 (Springer, New York, 1972)

    Book  Google Scholar 

  26. K. Löwner, Über monotone Matrixfunktionen. Math. Z. 38, 177–216 (1934)

    Article  MathSciNet  Google Scholar 

  27. J.E. McCarthy, Geometric interpolation of Hilbert spaces. Ark. Mat. 30, 321–330 (1992)

    Article  MathSciNet  Google Scholar 

  28. B. Mityagin, An interpolation theorem for modular spaces. Mat. Sbornik 66, 473–482 (1965)

    MathSciNet  Google Scholar 

  29. G.J. Murphy, C -Algebras and Operator Theory (Academic, New York, 1991)

    Google Scholar 

  30. V.I. Ovchinnikov, The method of orbits in interpolation theory. Math. Rep. 1, 349–515 (1984)

    MathSciNet  Google Scholar 

  31. J. Peetre, On interpolation functions III. Acta Sci. Math. (Szeged) 30, 235–239 (1969)

    MathSciNet  MATH  Google Scholar 

  32. J. Peetre, Two new interpolation methods based on the duality map. Acta Math. 173, 73–91 (1979)

    Article  MathSciNet  Google Scholar 

  33. W. Pusz, S.L. Woronowicz, Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)

    Article  MathSciNet  Google Scholar 

  34. M. Rosenblum, J. Rovnyak, Hardy Classes and Operator Theory (Dover, Mineola, 1997)

    MATH  Google Scholar 

  35. A. Sedaev, Description of interpolation spaces for the pair \(\left (L_p(a_0),L_p(a_1)\right )\). Soviet Math. Dokl. 14, 538–541 (1973)

    Google Scholar 

  36. A. Sedaev, E.M. Semenov, On the possibility of describing interpolation spaces in terms of the K-functional of Peetre. Optimizacja 4, 98–114 (1971)

    Google Scholar 

  37. M. Shechter, Complex interpolation. Compos. Math. 18, 117–147 (1967)

    MathSciNet  Google Scholar 

  38. G. Sparr, Interpolation of weighted L p spaces. Studia Math. 62, 229–271 (1978)

    Article  MathSciNet  Google Scholar 

  39. G. Sparr, A new proof of Löwner’s theorem. Math. Scand 47, 266–274 (1980)

    Article  MathSciNet  Google Scholar 

  40. A. Uhlmann, Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)

    Article  MathSciNet  Google Scholar 

  41. H. Vasudeva, On monotone matrix functions of two variables. Trans. Am. Math. Soc. 176, 305–318 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yacin Ameur .

Editor information

Editors and Affiliations

Appendix: The Complex Method is Quadratic

Appendix: The Complex Method is Quadratic

Let \(S=\{z\in \mathbf {C};\, 0\le \operatorname {Re} z\le 1\}\). Fix a Hilbert couple \(\overline {{\mathcal {H}}}\) and let \({\mathcal {F}}\) be the set of functions S → Σ which are bounded and continuous in S, analytic in the interior of S, and which maps the line j + i R into \({\mathcal {H}}_j\) for j = 0, 1. Fix 0 < θ < 1. The norm in the complex interpolation space \(C_\theta \left (\overline {{\mathcal {H}}}\,\right )\) is defined by

$$\displaystyle \begin{aligned}\left\|\,x\,\right\|{}_{C_\theta\left(\overline{{\mathcal{H}}}\,\right)}=\inf\left\{\left\|\,f\,\right\|{}_{\mathcal{F}};\, f(\theta)=x\right\}.\end{aligned}$$
(*)

Let \({\mathcal {P}}\) denote the set of polynomials \(f=\sum _1^N a_iz^i\) where a i ∈ Δ. We endow \({\mathcal {P}}\) with the inner product

$$\displaystyle \begin{aligned}\left\langle f,g\right\rangle_{M_\theta}=\sum_{j=0,1}\int_{\mathbf{R}}\left\langle f(j+it),g(j+it)\right\rangle_jP_j(\theta,t)\, dt,\end{aligned}$$

where {P 0, P 1} is the Poisson kernel for S,

$$\displaystyle \begin{aligned}P_j(\theta,t)=\frac {e^{-\pi t}\sin\theta\pi}{\sin^2\theta\pi+(\cos\theta\pi-(-1)^je^{-\pi t})^2}.\end{aligned}$$

Let M θ be the completion of \({\mathcal {P}}\) with this inner product. It is easy to see that the elements of M θ are analytic in the interior of S, and that evaluation map ff(θ) is continuous on M θ. Let N θ be the kernel of this functional and define a Hilbert space \({\mathcal {H}}_\theta \) by

$$\displaystyle \begin{aligned}{\mathcal{H}}_\theta=M_\theta/N_\theta.\end{aligned}$$

We denote the norm in \({\mathcal {H}}_\theta \) by ∥⋅∥θ.

Proposition A.1

\(C_\theta \left (\overline {{\mathcal {H}}}\,\right )={\mathcal {H}}_\theta \) with equality of norms.

Proof

Let \(f\in {\mathcal {F}}\). By the Calderón lemma in [7, Lemma 4.3.2], we have the estimate

$$\displaystyle \begin{aligned}\log\left\|\,f(\theta)\,\right\|{}_{C_\theta(\overline{{\mathcal{H}}})}\le\sum_{j=0,1}\int_{\mathbf{R}}\log\|f(j+it)\|{}_jP_j(\theta,t)\, dt.\end{aligned}$$

Applying Jensen’s inequality, this gives that

$$\displaystyle \begin{aligned}\left\|\,f(\theta)\,\right\|{}_{C_\theta(\overline{{\mathcal{H}}})}\le (\sum_{j=0,1}\int_{\mathbf{R}} \left\|\,f(j+it)\,\right\|{}_j^2P_j(\theta,t)\, dt)^{1/2}=\left\|\,f\,\right\|{}_{M_\theta}.\end{aligned}$$

Hence \({\mathcal {H}}_\theta \subset C_\theta (\overline {{\mathcal {H}}})\) and \(\left \|\cdot \right \|{ }_{C_\theta (\overline {{\mathcal {H}}})}\le \|\cdot \|{ }_\theta \). On the other hand, for \(f\in {\mathcal {P}}\) one has the estimates

$$\displaystyle \begin{aligned}\left\|\,f(\theta)\,\right\|{}_\theta\le \left\|\,f\,\right\|{}_{M_\theta}\le\sup\{\left\|\,f(j+it)\,\right\|{}_j;\, t\in \mathbf{R},\, j=0,1\}= \left\|\,f\,\right\|{}_{\mathcal{F}},\end{aligned}$$

whence \(C_\theta (\overline {{\mathcal {H}}})\subset {\mathcal {H}}_\theta \) and \(\left \|\cdot \right \|{ }_{C_\theta (\overline {{\mathcal {H}}})}\ge \left \|\cdot \right \|{ }_\theta \). □

It is well known that the method C θ is of exponent θ (see, e.g., [7]). We have shown that C θ is an exact quadratic interpolation method of exponent θ.

1.1 Complex Interpolation with Derivatives

In [15, pp. 421–422], Fan considers the more general complex interpolation method C θ(n) for the n:th derivative. This means that in (*), one consider representations \(x=\frac 1 {n!}f^{(n)}(\theta )\) where \(f\in {\mathcal {F}}\); the complex method C θ is thus the special case C θ(0). It is shown in [15] that, for n ≥ 1, the C θ(n)-method is represented, up to equivalence of norms, by the quasi-power function \(h(\lambda )=\lambda ^{\,\theta }/(1+\frac {\theta (1-\theta )}n\left |\,\log \lambda \,\right |)^{\,n}\). The complex method with derivatives was introduced by Schechter [37]; for more details on that method, we refer to the list of references in [15].

.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ameur, Y. (2019). Interpolation Between Hilbert Spaces. In: Aleman, A., Hedenmalm, H., Khavinson, D., Putinar, M. (eds) Analysis of Operators on Function Spaces. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-14640-5_4

Download citation

Publish with us

Policies and ethics