Skip to main content

New Approaches in Measuring to the Calculations and Analysis Modelling of Breath-by-Breath Alveolar Gas Exchanges in Humans

  • Conference paper
  • First Online:
Sport Science Research and Technology Support (icSPORTS 2016, icSPORTS 2017)

Abstract

The pros and cons of different algorithms developed for estimating breath-by-breath (B-by-B) alveolar O2 transfer (\( {\dot{\text{V}}} \)O2A) will be detailed and discussed. \( {\dot{\text{V}}} \)O2,A is the difference between O2 uptake at the mouth and changes in alveolar O2 stores (∆VO2,si), which, for any given breath, are equal to the alveolar volume change at constant \( {\text{F}}_{{{\rm AO}_{2} }} \left[ {\left( {{\text{F}}_{{{\rm A}i{\text{O}}_{2} }} \times \, \Delta {\text{V}}_{{{\rm A}i}} } \right)} \right] \) plus the O2 alveolar fraction change at constant alveola volume \( [{\text{V}}_{{{\rm A}i - 1}} \times \left( {{\rm F}_{{{\text{A}}i}} {-}{\rm F}_{{{\text{A}}i - 1}} } \right)_{{{\text{O}}_{2} }} ] \), where VAi−1 is the alveolar volume at the beginning of a breath. Therefore, \( {\dot{\text{V}}} \)O2,A can be determined B-by-B if VAi−1 is: (i) set equal to the subject’s FRC (algorithm of Auchincloss, A) or to zero; (ii) measured (optoelectronic plethysmography, OEP); (iii) selected according to a procedure that minimises B-by-B variability (algorithm of Busso and Robbins, BR). Alternatively, the respiratory cycle can be redefined as the time between equal FO2 in two subsequent breaths (algorithm of Grønlund, G), making any assumption of VAi−1 unnecessary. All the above methods allow an unbiased estimate of \( {\dot{\text{V}}} \)O2,A at steady state, albeit with different precision. However, the algorithms “per se” affect the parameters describing the B-by-B kinetics during exercise transitions. Among these approaches, BR and G, by increasing the signal to noise ratio of the measurements, reduce the number of exercise repetitions necessary to study \( {\dot{\text{V}}} \)O2,A kinetics, compared to A approach. OEP and G (though technically challenging and conceptually still debated), thanks to their ability to track ∆VO2s changes during the early phase of exercise transitions, appear rather promising for investigating B-by-B gas exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliverti, A., et al.: Human respiratory muscle actions and control during exercise. J. Appl. Physiol. 83, 1256–1269 (1997)

    Article  Google Scholar 

  2. Aliverti, A., Kayser, B., Macklem, P.T.: Breath-by-breath assessment of alveolar gas stores and exchange. J. Appl. Physiol. 96, 1464–1469 (2004)

    Article  Google Scholar 

  3. Aliverti, A., Kaiser, B., Cautero, M., Dellacà, R.L., di Prampero, P.E., Capelli, C.: Pulmonary O2 kinetics at the onset of exercise is faster when actual changes in alveolar \( {\dot{\text{V}}} \) O2 stores are considered. Resp. Physiol. Neurobiol. 1698, 78–82 (2009)

    Google Scholar 

  4. Auchincloss Jr, J.H., Gilbert, R., Baule, G.H.: Effect of ventilation on oxygen transfer during early exercise. J. Appl. Physiol. 21, 810–818 (1966)

    Article  Google Scholar 

  5. Beaver, W.L., Wassermann, K.: Transients in ventilation at start and end of exercise. J. Appl. Physiol. 21, 390–399 (1968)

    Article  Google Scholar 

  6. Beaver, W.L., Wassermann, K., Whipp, B.J.: On-line computer analysis and breath-by-breath graphical display of exercise function test. J. Appl. Physiol. 34, 128–132 (1973)

    Article  Google Scholar 

  7. Beaver, W.L., Lamarra, N., Wasserman, K.: Breath-by-breath measurement of true alveolar gas exchange. J. Appl. Physiol. 51, 1662–1675 (1981)

    Article  Google Scholar 

  8. Busso, T., Robbins, P.A.: Evaluation of estimates of alveolar gas exchange by using a tidally ventilated non-homogenous lung model. J. Appl. Physiol. 82, 1963–1971 (1997)

    Article  Google Scholar 

  9. Capelli, C., Cautero, M., di Prampero, P.E.: New perspectives in breath-by-breath determination of alveolar gas exchanges in humans. Pflügers Arch. 441, 566–577 (2001)

    Article  Google Scholar 

  10. Capelli, C., Cautero, M., Poglgahi, S.: Algorithms, modelling and \( {\dot{\text{V}}} \)O2 kinetics. Eur. J. Appl. Physiol. 111, 331–342 (2011)

    Google Scholar 

  11. Cala, S.J., et al.: Chest wall and lung volume estimation by optical reflectance motion analysis. J. Appl. Physiol. 81, 2680–2689 (1996)

    Article  Google Scholar 

  12. Cautero, M., Beltrami, A.P., Capelli, C., di Prampero, P.E.: Breath-by-breath alveolar oxygen transfer at the onset of step exercise in humans: methodological implications. Eur. J. Physiol. 88, 203–231 (2002)

    Article  Google Scholar 

  13. Dellacà, R., Aliverti, A., Pelosi, P., Carlesso, E., Chiumello, D., Pedotti, A.: Estimation of end-expiratory variations by optoelectronic plethysmography (OEP). Crit. Care Med. 29, 1807–1811 (2001)

    Article  Google Scholar 

  14. di Prampero, P.E., Lafortuna, C.L.: Breath-by-breath estimate of alveolar gas transfer variability in man at rest and during exercise. J. Physiol. (Lond.) 415, 459–475 (1989)

    Article  Google Scholar 

  15. Giezendanner, D., Cerretelli, P., di Prampero, P.E.: Breath-by-breath alveolar gas exchange. J. Appl. Physiol. 55, 583–590 (1983)

    Article  Google Scholar 

  16. Gimenez, P., Busso, T.: Implications of breath-by-breath oxygen uptake determination on kinetics assessment during exercise. Respir. Physiol. Neurobiol. 162, 238–241 (2008)

    Article  Google Scholar 

  17. Grassi, B., Poole, D.C., Richardson, R.S., Knight, D.R., Erickson, B.K., Wagner, P.D.: Muscle O2 uptake kinetics in humans: implications for metabolic control. J. Appl. Physiol. 80, 988–998 (1996)

    Article  Google Scholar 

  18. Grønlund, L.: A new method for breath-to-breath determination of oxygen flux across the alveolar membrane. Eur. J. Appl. Physiol. 52, 167–172 (1984)

    Article  Google Scholar 

  19. Hill, A.V., Lupton, H.: Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q. J. Med. 16, 135–171 (1923)

    Article  Google Scholar 

  20. Krogh, A., Lindhard, J.: The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. (Lond.) 47, 112–136 (1913)

    Article  Google Scholar 

  21. Linnarsson, D.: Dynamics of pulmonary gas exchange and heart rate at start and end of exercise. Acta Physiol. Scand. 415(suppl), 1–68 (1974)

    Google Scholar 

  22. Poole, D.C., Jones, A.M.: Oxygen uptake kinetics. Compr. Physiol. 2, 933–996 (2012)

    Google Scholar 

  23. Rossiter, H.B.: Exercise: kinetic considerations for gas exchange. Compr. Physiol. 1, 203–244 (2011)

    Google Scholar 

  24. Swanson, G.D.: Breath-to-breath considerations for gas exchange kinetics. In: Cerretelli, P., Whipp, B. (eds.) Exercise bioenergetics and gas exchange, pp. 211–222. Elsevier/North Holland, Amsterdam (1980)

    Google Scholar 

  25. Vogiatzis, I., et al.: Oxygen kinetics and debt during recovery from expiratory flow-limited exercise in healthy humans. Eur. J. Appl. Physiol. 99, 265–274 (2007)

    Article  Google Scholar 

  26. Wessel, H.U., Stout, R.L., Bastanier, C.K., Paul, M.H.: Breath-by-breath variation of FRC: effect on \( {\dot{\text{V}}} \)O2 and \( {\dot{\text{V}}} \)CO2 measured at the mouth. J. Appl. Physiol. 46, 1122–1126 (1979)

    Google Scholar 

  27. West, J.B.: Regional differences in gas exchange in the lung of erect man. J. Appl. Physiol. 17, 893–898 (1962)

    Article  Google Scholar 

  28. Whipp, B.J., Ward, S.A., Rossiter, H.B.: Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Med. Sci. Sports Exerc. 37, 1574–1585 (2005)

    Article  Google Scholar 

  29. Wüst, R.C.I., Aliverti, A., Capelli, C., Kayser, B.: Breath-by-breath changes of lung oxygen stores at rest and during exercise in humans. Resp. Physiol. Neurobiol. 164, 291–299 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Capelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capelli, C. (2019). New Approaches in Measuring to the Calculations and Analysis Modelling of Breath-by-Breath Alveolar Gas Exchanges in Humans. In: Cabri, J., Pezarat-Correia, P., Vilas-Boas, J. (eds) Sport Science Research and Technology Support. icSPORTS icSPORTS 2016 2017. Communications in Computer and Information Science, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-14526-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14526-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14525-5

  • Online ISBN: 978-3-030-14526-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics