Skip to main content

Novel Approaches for Geometrical Model-Based Calculation of Human Body Segment Inertial Parameter Values

  • Conference paper
  • First Online:
Sport Science Research and Technology Support (icSPORTS 2016, icSPORTS 2017)

Abstract

In human motion analysis, inverse dynamic solutions are used for the determination of joint reaction forces and net joint torques. This approach requires a full kinematic description, external forces and, most important, accurate anthropometric measures. For the estimation of human body segment parameter values, several methods have been proposed in literature throughout the last 120 years. The paper gives an overview of historical and contemporary methods with a specific focus on approaches based on geometrical models of the human body. Methods for (semi-)automated shape detection, segmentation and calculation of anthropometric dimensions are presented and compared. Body segment parameters of Hatze’s hominoid model can be estimated applying image based or photogrammetric techniques. Results of an evaluation study on 6 subjects (3 male, 3 female) by comparing principal moments of inertia and total body masses are shown. The calculation of body segment inertial parameters from 3D surface scanning techniques has proven to be a fast and accurate method without exposing subjects to radiation. Future developments in application of mobile 3D scanning techniques can be expected to further ease handling and reduce costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cahouët, V., Martin, L., Amarantini, D.: Static optimal estimation of joint accelerations for inverse dynamics problem solution. J. Biomech. 35(11), 1507–1513 (2002)

    Article  Google Scholar 

  2. Winter, D.: Biomechanics and Motor Control of Human Movement, 4th edn. Wiley, New Jersey (2009)

    Book  Google Scholar 

  3. Rao, G., Amarantini, D., Berton, E., Favier, D.: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J. Biomech. 39(8), 1531–1536 (2006)

    Article  Google Scholar 

  4. Futamure, S., Bonnet, V., Dumas, R., Venture, G.: A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices. J. Biomech. 64, 85–92 (2017)

    Article  Google Scholar 

  5. Cizgin, P., Kornfeind, P., Haßmann, M., Baca, A.: Advancements of methods for fast and accurate estimation of human body segment parameter values. In: Proceedings of the 5th International Congress on Sport Sciences Research and Technology Support, vol. 1, pp. 69–74. icSPORTS. https://doi.org/10.5220/0006439400690074

  6. Braune, W., Fischer, O.: Der Körperschwerpunkt Deutscher Infanteristen. ATI 138 452. National Technical Information Service, Leipzig (1889)

    Google Scholar 

  7. Dempster, W.T.: Space requirements for the seated operator. Wright Air Development Center WADC. Technical report TR-55-159. Wright-Patterson Air Force Base, Dayton (1955)

    Google Scholar 

  8. Clauser, C.E., McConville, J.T., Young, J.W.: Weight, volume and center of mass of segments of the human body. AMRL Technical report. Wright-Patterson Air Force Base, Dayton (1969)

    Google Scholar 

  9. Drillis, R., Contini, R.: Body Segment Parameters. Report No. 1166-03. Office of Vocational Rehabilitation, New York (1966)

    Google Scholar 

  10. Nigg, B.M., Herzog, W.: Biomechanics of the Muskulo-Skeletal System, 2nd edn. Wiley, Chichester (1999)

    Google Scholar 

  11. Durkin, J.L.: Measurement and estimation of human body segment parameters. In: Hong, Y., Bartlett, R. (eds.) Routledge Handbook of Biomechanics and Human Movement Science, pp. 197–213. Routledge, London (2008)

    Google Scholar 

  12. Erdmann, W.S., Kowalczyk, R.: A personalized method for estimating centre of mass location of the whole body based on differentiation of tissues of a multi-divided trunk. J. Biomech. 48(1), 65–67 (2015)

    Article  Google Scholar 

  13. Erdmann, W.S.: Geometric and inertial data of the trunk in adult males. J. Biomech. 30(7), 679–688 (1997)

    Article  Google Scholar 

  14. Zatsiorsky, V., Seluyanov, V., Chugunova, L.: In vivo body segment inertial parameter determination using a gamma-scanner method. In: Berme, N., Cappozzo, A. (eds.) Biomechanics of Human Movement: Applications in Rehabilitation, Sports and Ergonomics, pp. 186–202. Bertec, Worthington (1990)

    Google Scholar 

  15. Durkin, J.L., Dowling, J.J., Andrews, D.M.: The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. J. Biomech. 35(12), 1575–1580 (2002)

    Article  Google Scholar 

  16. Wicke, J., Dumas, G.A., Costigan, P.A.: Trunk density profile estimates from dual X-ray absorptiometry. J. Biomech. 41(4), 861–867 (2007)

    Article  Google Scholar 

  17. Ackland, T., Henson, P., Bailey, D.: The uniform density assumption: its effect upon the estimation of body segment inertial parameters. Int. J. Sports Biomech. 4(2), 146–155 (1988)

    Article  Google Scholar 

  18. Cheng, C.-K., Chen, H.-H., Chen, C.-S., Lee, C.-L., Chen, C.-Y.: Segment inertial properties of Chinese adults determined from magnetic resonance imaging. Clin. Biomech. 15(8), 559–566 (2000)

    Article  Google Scholar 

  19. Rossi, M., Lyttle, A., El-Sallam, A., Benjanuvatra, N., Blanksby, B.: Body segment inertial parameters of elite swimmers using DXA and indirect methods. J. Sports Sci. Med. 12(4), 761–775 (2013)

    Google Scholar 

  20. Bonnet, V., Fraisse, P., Crosnier, A., Gautier, M., González, A., Venture, G.: Optimal exciting dance for identifying inertial parameters of an anthropomorphic structure. IEEE Trans. Rob. 32(4), 1–14 (2016)

    Article  Google Scholar 

  21. Díaz-Rodríguez, M., Valera, A., Page, A., Besa, A., Mata, V.: Dynamic parameter identification of subject-specific body segment parameters using robotics formalism: case study head complex. J. Biomech. Eng. 138(5), 051009 (2016)

    Article  Google Scholar 

  22. Son, J., Ryu, J., Kim, J., Kim, Y.: Determination of inertial parameters using a dynamometer. Bio-Med. Mater. Eng. 24(6), 2447–2455 (2014)

    Google Scholar 

  23. Hanavan, E.P.: A mathematical model of the human body. No. AFIT-GA-PHYS-64-3 Wright-Patterson Air Force Base, Dayton (1964)

    Google Scholar 

  24. Hatze, H.: A model for the computational determination of parameter values of anthropomorphic segments. CSIR Technical report TWISK 79, Pretoria (1979)

    Google Scholar 

  25. Hatze, H.: A mathematical model for the computational determination of parameter values of anthropomorphic segments. J. Biomech. 13(10), 833–843 (1980)

    Article  Google Scholar 

  26. Clarkson, S., Choppin, S., Hart, J., Heller, B., Wheat, J.: Calculating body segment inertia parameters from a single rapid scan using the Microsoft Kinect. In: Proceedings of 3rd International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 16–17 October (2012)

    Google Scholar 

  27. Clarkson, S., Wheat, J., Heller, B., Choppin, S.: Assessment of a Microsoft Kinect-based 3D scanning system for taking body segment girth measurements: a comparison to ISAK and ISO standards. J. Sports Sci. 34(11), 1006–1014 (2016)

    Article  Google Scholar 

  28. Bragança, S., Arezes, P., Carvalho, M., Ashdown, S.P., Xu, B., Castellucci, I.: Validation study of a Kinect based body imaging system. Work 57(1), 9–21 (2017)

    Article  Google Scholar 

  29. Peyer, K.E., Morris, M., Sellers, W.I.: Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras. PeerJ 3, e381 (2015). https://doi.org/10.7717/peerj.831

    Article  Google Scholar 

  30. Stančić, I., Musić, J., Zanchi, V.: Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement 46(1), 716–726 (2013)

    Article  Google Scholar 

  31. Sheets, A.L., Corazza, S., Andriacchi, T.P.: An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements. J. Biomech. Eng. 132(1), 011004 (2010)

    Article  Google Scholar 

  32. Lu, J.-M., Wang, M.-J.J.: Automated anthropometric data collection using 3D whole body scanners. Expert Syst. Appl. 35, 407–414 (2008)

    Article  Google Scholar 

  33. Jafari Roodbandi, A.S., Naderi, H., Hashenmi-Nejad, N., Choobineh, A., Baneshi, M.R., Feyzi, V.: Technical report on the modification of 3-dimensional non-contact human body laser scanner for the measurement of anthropometric dimensions: verification of its accuracy and precision. J. Lasers Med. Sci. 8(1), 22–28 (2017)

    Article  Google Scholar 

  34. Bogner, M.: Regressionsanalyse anthropometrischer Daten zur Abschätzung von Segmentkonturdimensionen. Master thesis, University of Vienna (1992)

    Google Scholar 

  35. Tscherne, B.: Funktionsanpassungsalgorithmen für Datensequenzen anthropometrischer Dimensionen. Master thesis, University of Vienna (2001)

    Google Scholar 

  36. Baca, A.: Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values. J. Biomech. 29(4), 563–567 (1996)

    Article  Google Scholar 

  37. Schiffl, K.: Bestimmung von Hominoidsegmenten aus 3D-Bodyscannerdaten. Master thesis, Technical University Vienna (2011)

    Google Scholar 

  38. Cizgin, P.: Automatisierte Bestimmung anthropometrischer Segmentparameter des Hominoidmodells von Hatze mittels 3D-Laserscantechnologie. Master thesis, Medical University Vienna (2013)

    Google Scholar 

  39. Redlarski, G., Krawczuk, M., Palkowski, A.: Application of 3D whole body scanning in research on human body surface area. In: Book of Abstracts 3DBODY.TECH 2017 8th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Montreal, Canada, 11–12 October 2017

    Google Scholar 

  40. Hassmann, M., Markl, R., Friedl, N., Friedl, C., Krach, W.: Aerodynamics, EMG and 3D joint angles of different flight configurations of ATOS hang glider and pilot. A case study. In: Czaplicki, A., Wychowański, M., Wit, A. (eds.) International Conference of the Polish Society of Biomechanics 2016, pp. 105–106. Biała Podlaska, Polen (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Baca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baca, A., Hassmann, M., Kornfeind, P., Cizgin, P. (2019). Novel Approaches for Geometrical Model-Based Calculation of Human Body Segment Inertial Parameter Values. In: Cabri, J., Pezarat-Correia, P., Vilas-Boas, J. (eds) Sport Science Research and Technology Support. icSPORTS icSPORTS 2016 2017. Communications in Computer and Information Science, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-14526-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14526-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14525-5

  • Online ISBN: 978-3-030-14526-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics