Skip to main content

Phototrophic Microbial Consortium: A Technology for Enhanced Biofuel Production

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

Attention to renewable resources of fuel is increased because of global warming which is due to carbon dioxide accumulation in the atmosphere besides fluctuation in fuel price. Biofuels are proposed as a confident replacement for chemical fuels in order to solve this problem. Bacteria, fungi, plants, and algae are able to produce biofuels. Recently microbiologists are more interested in bioprocessing of microbial activities based on the optimization of various tasks simultaneously, and to increase process productivity and stability. These desirable properties often obtained as the result of interactions between microbial communities in polymicrobial culturing approaches. Production of fuels by biological systems using microbial consortia is a major reliable strategy for low-cost production, although, great challenge is faced when using such multi-cultures in large-scale productions. Although microalgae produce different types of biodiesels, they cannot compete with other organisms for using inorganic resources. Cyanobacteria are other biofuel producing organisms which combine advantages of eukaryotic algae and prokaryotic microorganisms with the ability of photosynthesis and as they are genetically transformable hosts. The maximum light requirement is a challenge in industrial bioreactor design based on cyanobacteria. Green sulfur bacteria are other photosynthetic bacteria, which can grow and produce biofuels in less light quantum fluxes by using unique large photosynthetic antenna complexes named chlorosomes. The advantages of algae and bacteria consortia in biofuel production include cultivation on large-scale wastewater ponds, heavy metal removal, decrease the values of wastewater indexes and production of high-value fatty acids by algae required for the growth of other organisms.

Keywords

  • Biofuel
  • Microbial consortia
  • Algae
  • Cyanobacteria
  • Green sulfur bacteria

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_6
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3

References

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    CrossRef  Google Scholar 

  • Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    CrossRef  Google Scholar 

  • Atsumi S, Wu TY, Machado IMP, Huang WC, Chen PY, Pellegrini M, Liao JC (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449

    CrossRef  Google Scholar 

  • Bagi Z, Ács N, Bálint B, Horváth L, Dobó K, Perei KR, Rákhely G. Kovács KL (2007) Biotechnological intensification of biogas production. Appl Microbial Biotechnol 76(2): 473–482

    Google Scholar 

  • Bernstein HC, Carlson RP (2012) Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J 3(4):e201210017

    CrossRef  Google Scholar 

  • Bernstein HC, Paulson SD, Carlson RP (2012) Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J Biotechnol 157:159–166

    CrossRef  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  • Brenner K, Arnold FH (2011) Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS ONE 6:e16791

    CrossRef  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1–2):131–149

    CrossRef  Google Scholar 

  • Chapman RL (2013) Algae: the world’s most important “plants”-an introduction. Mitig Adapt Strat Gl 18(1):5–12

    CrossRef  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    CrossRef  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    CrossRef  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47:273–298

    CrossRef  Google Scholar 

  • Croome RL, Tyler PA (1984) The microanatomy and ecology of Chlorochromatium aggregatum in two meromictic lakes in Tasmania. J Gen Microbiol 130:2717–2723

    Google Scholar 

  • Cuaresma M, Janssen M, Vilchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photo-bioreactor under high irradiance. Biotechnol Bioeng 104:352–359

    CrossRef  Google Scholar 

  • Czeczuga B, Gradzki F (1973) Relationship between extracellular and cellular production in the sulphuric green bactreium Chlorobium limicola Nads. (Chlorobacteriaceae) as compared to primary production of phytoplankton. Hydrobiologia 42:85–95

    CrossRef  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528

    Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864

    CrossRef  Google Scholar 

  • Dijkstra AJ (2006) Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. Eur J Lipid Sci Technol 108(3):249–264

    CrossRef  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    CrossRef  Google Scholar 

  • Dubini A, Antal TK (2015) Generation of high-value products by photosynthetic microorganisms: from sunlight to biofuels. Photosynth Res 125(3):355–356

    CrossRef  Google Scholar 

  • Eiteman MA, Lee SA, Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2:3

    CrossRef  Google Scholar 

  • Eiteman MA, Lee SA, Altman R, Altman E (2009) A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng 102:822–827

    CrossRef  Google Scholar 

  • Fægri A, Torsvik VL, GoksÖyr J (1977) Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem 9:105–112

    CrossRef  Google Scholar 

  • Fakruddin M, Mannan K (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci 42(1):19–33

    Google Scholar 

  • Formolo MJ, Lyons TW, Zhang C, Kelley C, Sassen R, Horita J, Cole DR (2004) Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chem Geo 205:253–264

    CrossRef  Google Scholar 

  • Gao ZX, Zhao H, Li ZM, Tan XM, Lu XF (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    CrossRef  Google Scholar 

  • Gasperi J, Cladière M, Rocher V, Moilleron R (2009) Combined sewer over flow quality and EU water framework directive. Urban waters 1:124–128

    Google Scholar 

  • Glaeser J, Overmann J (2003a) Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 69:3739–3750

    CrossRef  Google Scholar 

  • Glaeser J, Overmann J (2003b) The significance of organic carbon compounds for in situ metabolism and chemotaxis of phototrophic consortia. Environ Microbiol 5:1053–1063

    CrossRef  Google Scholar 

  • Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Res Ind 10:1–14

    CrossRef  Google Scholar 

  • High CF (1996) Cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426

    CrossRef  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment; evidence for a methanogen-sulfate reducers consortium. Global Biogeochem Cycles 8:451–463

    CrossRef  Google Scholar 

  • Höffner K, Barton PI (2014) Design of microbial consortia for industrial biotechnology. Comp Aided Chem Eng 34:65–74

    CrossRef  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant J 54:621–639

    CrossRef  Google Scholar 

  • Iwaki T, Haranoh K, Inoue N, Kojima K, Satoh R, Nishino T, Wada S, Ihara H, Tsuyama S, Kobayashi H, Wadano A (2006) Expression of foreign type I ribulose-1, 5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) stimulates photosynthesis in cyanobacterium Synechococcus PCC7942 cells. Photosynth Res 88(3):287–297

    Google Scholar 

  • Jinkerson RE, Subramanian V, Posewitz MC (2011) Improving biofuel production in phototrophic microorganisms with systems biology. Biofuels 2(2):125–144

    CrossRef  Google Scholar 

  • Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238

    CrossRef  Google Scholar 

  • Liu Y, Fredrickson JK, Sadler NC, Nandhikonda P, Smith R, Wright AT (2015) Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling. Biotechnol Biofuels 8(1):156–167

    CrossRef  Google Scholar 

  • Luff R, Wallmann K, Aloisi G (2004) Numerical modelling of carbonate crust formation at cold vent sites: Significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sci Lett 221:337–353

    CrossRef  Google Scholar 

  • Miller RG, Sorrell SR (2014) The future of oil supply. Philos Trans A Math Phys Eng Sci 372:20130179

    CrossRef  Google Scholar 

  • Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    CrossRef  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    CrossRef  Google Scholar 

  • Marschall E, Jogler M, Henssge U, Overmann J (2010) Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol 12:1348–1362

    CrossRef  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21(3):244–251

    CrossRef  Google Scholar 

  • Müller J, Overmann J (2011) Close interspecies interactions between prokaryotes from sulfureous environments. Front Microbiol 2:146

    CrossRef  Google Scholar 

  • Murphy F, Devlin G, Deverell R, McDonnell K (2013) Biofuel production in Ireland—an approach to 2020 targets with a focus on algal biomass. Energies 6(12):6391–6412

    CrossRef  Google Scholar 

  • Nozzi NE, Oliver JW, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol 1:7–13

    CrossRef  Google Scholar 

  • Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA 110:1249–1254

    CrossRef  Google Scholar 

  • Overmann J, Lehmann S, Pfenning N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria). Arch Microbiol 157:29–37

    CrossRef  Google Scholar 

  • Pfannes KR, Vogl K, Overmann J (2007) Heterotrophic symbionts of phototrophic consortia: members of a novel diverse cluster of Betaproteobacteria characterized by a tandem rrn operon structure. Environ Microbiol 9:2782–2794

    CrossRef  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref 3:431–440

    CrossRef  Google Scholar 

  • Pittman JK, Deana AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    CrossRef  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501

    CrossRef  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56(1):65–91

    MathSciNet  CrossRef  Google Scholar 

  • Richardson JM, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 1:93–100

    CrossRef  Google Scholar 

  • Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643

    CrossRef  Google Scholar 

  • Saba B, Christy AD, Yu Z (2017) Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew Sust Energy Rev 73:75–84

    Google Scholar 

  • Sabra W, Dietz D, Tjahjasari D, Zeng AP (2010) Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 10:407–421

    CrossRef  Google Scholar 

  • Schuchardt U, Sercheli R, Vargas RM (1998) Transesterifi cation of vegetable oils: a review. J Braz Chem Soc 9:199–210

    CrossRef  Google Scholar 

  • Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51(5):355–386

    CrossRef  Google Scholar 

  • Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y, Iwasaki I, Fujiwara S, Tsuzuki M, Nakamura Y (2010) Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 76:3153–3159

    CrossRef  Google Scholar 

  • Thiel V, Peckmann J, Richnow HH, Luth U, Reitner J, Michaelis W (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar Chem 73:97–112

    CrossRef  Google Scholar 

  • Treude T, Boetius A, Knittel K, Wallmann K, Jørgensen BB (2003) Anaerobic oxidation of methane above gas hydrates at hydrate ridge, NE Pacific Ocean. Mar Ecol Prog Ser 264:1–14

    CrossRef  Google Scholar 

  • Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochoropsis oculata microalga’s lipid to biodiesel on Al2CO3supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831

    CrossRef  Google Scholar 

  • Unrean P, Srienc F (2010) Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. J Biotechnol 150:215–223

    CrossRef  Google Scholar 

  • Uyeda K, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J Biol Chem 246:3120–3125

    Google Scholar 

  • Veldhuis MJW, van Gemerden H (1986) Competition between purple and brown phototrophic bacteria in stratified lakes: sulfide, acetate, and light as limiting factors. FEMS Microbiol Lett 38:31–38

    CrossRef  Google Scholar 

  • Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102(3):2724–2730

    CrossRef  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    CrossRef  Google Scholar 

  • Zeidan AA, Rådström P, van Niel EW (2010) Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing co-culture. Microb Cell Fact 9(1):102

    CrossRef  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102(13):6909–6919

    CrossRef  Google Scholar 

  • Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93:1423–1435

    CrossRef  Google Scholar 

  • Zwolinski MD, Harris RF, Hickey WJ (2000) Microbial consortia involved in the anaerobic degradation of hydrocarbons. Biodegradation 11:141–158

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Sadat Naghavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Naghavi, N.S., Sameipour, F. (2019). Phototrophic Microbial Consortium: A Technology for Enhanced Biofuel Production. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)