Skip to main content

Bioreactor for Microalgal Cultivation Systems: Strategy and Development

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

Microalgae are important natural resources that can provide food, medicine, energy and various bioproducts for nutraceutical, cosmeceutical and aquaculture industries. Their production rates are superior compared to those of terrestrial crops. However, microalgae biomass production on a large scale is still a challenging problem in terms of economic and ecological viability. Microalgal cultivation system should be designed to maximize production with the least cost. Energy efficient approaches of using light, dynamic mixing to maximize use of carbon dioxide (CO2) and nutrients and selection of highly productive species are the main considerations in designing an efficient photobioreactor. In general, optimized culture conditions and biological responses are the two overarching attributes to be considered for photobioreactor design strategies. Thus, fundamental aspects of microalgae growth, such as availability of suitable light, CO2 and nutrients to each growing cell, suitable environmental parameters (including temperature and pH) and efficient removal of oxygen which otherwise would negatively impact the algal growth, should be integrated into the photobioreactor design and function. Innovations should be strategized to fully exploit the wastewaters, flue-gas, waves or solar energy to drive large outdoor microalgae cultivation systems. Cultured species should be carefully selected to match the most suitable growth parameters in different reactor systems. Factors that would decrease production such as photoinhibition, self-shading and phosphate flocculation should be nullified using appropriate technical approaches such as flashing light innovation, selective light spectrum, light-CO2 synergy and mixing dynamics. Use of predictive mathematical modelling and adoption of new technologies in novel photobioreactor design will not only increase the photosynthetic and growth rates but will also enhance the quality of microalgae composition. Optimizing the use of natural resources and industrial wastes that would otherwise harm the environment should be given emphasis in strategizing the photobioreactor mass production. To date, more research and innovation are needed since scalability and economics of microalgae cultivation using photobioreactors remain the challenges to be overcome for large-scale microalgae production.

Keywords

  • Energy efficiency
  • Mathematical modelling
  • Microalgae
  • Nutrients
  • Photobioreactors
  • Solar energy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_4
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5

The data are collected from 48 previous studies on outdoor culture works listed in Table 4.1

Fig. 4.6

The data are collected from 48 previous studies on outdoor culture works listed in Table 4.1

References

  • Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D (2016) Flashing light in microalgae biotechnology. Bioresour Tech 203:357–363

    CrossRef  Google Scholar 

  • Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732

    CrossRef  Google Scholar 

  • Adenan NS, Yusoff FM, Medipally SR, Shariff M (2016) Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. J Environ Biol 37:669–676

    Google Scholar 

  • Al Ketife AMD, Judd S, Znad H (2016) A mathematical model for carbon fixation and nutrient removal by an algal photobioreactor. Chem Eng Sci 153:354–362

    CrossRef  Google Scholar 

  • Alishahi M, Karamifar M, Mesbah M (2015) Effects of astaxanthin and Dunaliella salina on skin carotenoids, growth performance and immune response of Astronotus ocellatus. Aquac Int 23(5):1239–1248

    CrossRef  Google Scholar 

  • Aly N, Tarai RK, Kale PG, Paramasivan B (2017) Modelling the effect of photoinhibition on microalgal production potential in fixed and trackable photobioreactors in Odisha. India Curr Sci 113(2):272–283

    CrossRef  Google Scholar 

  • Angeles IP, Chien Y-H, Tayamen MM (2009) Effects of different dosages of astaxanthin on giant freshwater prawn Macrobrachium rosenbergii (De Man) challenged with Lactococcus garvieae. Aquac Res 41(1):70–77

    CrossRef  Google Scholar 

  • Arashiro LT, Montero N, Ferrer I, Acien FG, Gomez C, Garfi M (2018) Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci Total Environ 622–623:1118–1130

    CrossRef  Google Scholar 

  • Arora N, Patel A, Pruthi PA, Poluri KM, Pruthi V (2018) Utilization of stagnant non-potable pond water for cultivating oleaginous microalga Chlorella minutissima for biodiesel production. Renew Energ 126:30–37

    CrossRef  Google Scholar 

  • Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour Tech 148:373–378

    CrossRef  Google Scholar 

  • Becker EW (1984) Biotechnology and exploitation of the green alga Scenedesmus obliquus in India. Biomass 4(1):1–19

    MathSciNet  CrossRef  Google Scholar 

  • Becker EW, Venkataraman LV (1984) Production and utilization of the blue-green alga Spirulina in India. Biomass 4(2):105–125

    CrossRef  Google Scholar 

  • Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M (2016) Availability and utilization of pigments from microalgae. Crit Rev Food Sci 56(13):2209–2222

    CrossRef  Google Scholar 

  • Blanken W, Cuaresma M, Wijffels RH, Janssen M (2013) Cultivation of microalgae on artificial light comes at a cost. Algal Res 2(4):333–340

    CrossRef  Google Scholar 

  • Burgess G, Fernández-Velasco JG (2007) Materials, operational energy inputs, and net energy ratio for photobiological hydrogen production. Int J Hydrogen Energ 32(9):1225–1234

    CrossRef  Google Scholar 

  • Cao W, Wang X, Sun S, Hu C, Zhao Y (2017) Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods. Bioresour Tech 241:701–709

    CrossRef  Google Scholar 

  • Carlozzi P (2000) Hydrodynamic aspects and Arthrospira growth in two outdoor tubular undulating row photobioreactors. Appl Microbiol Biot 54(1):14–22

    CrossRef  Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81(3):305–315

    CrossRef  Google Scholar 

  • Chang HX, Fu Q, Huang Y, Xia A, Liao Q, Zgu X, Zheng YP, Sun CH (2016) An annular photobioreactor with ion-exchange-membrane for non-touch microalgae cultivation with wastewater. Bioresour Tech 219:668–676

    CrossRef  Google Scholar 

  • Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Tech 184:190–201

    CrossRef  Google Scholar 

  • Chen BF, Yang HK, Wu CH, Lee TC, Chen B (2018) Numerical study of mixing in microalgae-farming tanks with baffles. Ocean Eng 161:168–186

    CrossRef  Google Scholar 

  • Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195(1):35–49

    Google Scholar 

  • Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70(1):299–312

    Google Scholar 

  • Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943

    CrossRef  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Tech 101(17):6751–6760

    CrossRef  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    CrossRef  Google Scholar 

  • da Fontoura JT, Rolim GS, Farenzena M, Gutterres M (2017) Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp. Process Saf Environ 111:355–362

    CrossRef  Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    CrossRef  Google Scholar 

  • Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85(3):289–295

    Google Scholar 

  • Detweiler AM, Mioni CE, Hellier KL, Allen JJ, Carter SA, Bebout BM, Fleming EE, Corrado C, Prufert-Bebout LE (2015) Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency. Algal Res 9:170–177

    CrossRef  Google Scholar 

  • Di Caprio F, Altimari P, Pagnanelli F (2018) Effect of Ca2+ concentration on Scenedesmus sp. growth in heterotrophic and photoautotrophic cultivation. New Biotechnol 40:228–235

    CrossRef  Google Scholar 

  • Dogaris I, Welch M, Meiser A, Walmsley L, Philippidis G (2015) A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresour Tech 198:316–324

    CrossRef  Google Scholar 

  • Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18(6):811–826

    Google Scholar 

  • Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117

    CrossRef  Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Google Scholar 

  • Ebrahimi Nigjeh S, Yusoff FM, Mohamed Alitheen NB, Rasoli M, Keong YS, Omar ARb (2013) Cytotoxic effect of ethanol extract of microalga, Chaetoceros calcitrans, and its mechanisms in inducing apoptosis in human breast cancer cell line. Biomed Res Int (Article ID 783690)

    Google Scholar 

  • Feng P, Deng Z, Hu Z, Fan L (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Tech 102(22):10577–10584

    CrossRef  Google Scholar 

  • Foo SC, Yusoff FM, Ismail M, Basri M, Chan KW, Khong NMH, Yau SK (2015) Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Algal Res 12:26–32

    CrossRef  Google Scholar 

  • Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, Chan KW, Ebrahimi M (2017) Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotechnol 241:175–183

    CrossRef  Google Scholar 

  • Freitas BCB, Cassuriaga APA, Morais MG, Costa JAV (2017) Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima. Bioresour Tech 238:248–253

    CrossRef  Google Scholar 

  • Fuente D, Keller J, Conejero JA, Rögner M, Rexroth S, Urchueguía JF (2017) Light distribution and spectral composition within cultures of micro-algae: quantitative modelling of the light field in photobioreactors. Algal Res 23:166–177

    CrossRef  Google Scholar 

  • Gao X, Wang X, Li H, Roje S, Sablani SS, Chen S (2017) Parameterization of a light distribution model for green cell growth of microalgae: Haematococcus pluvialis cultured under red LED lights. Algal Res 23:20–27

    CrossRef  Google Scholar 

  • García-González M, Moreno J, Cañavate JP (2003) Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J Appl Phycol 15(2):177–184

    CrossRef  Google Scholar 

  • García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115(1):81–90

    CrossRef  Google Scholar 

  • Gbadamosi OK, Lupatsch I (2018) Effects of dietary Nannochloropsis salina on the nutritional performance and fatty acid profile of Nile tilapia, Oreochromis niloticus. Algal Res 33:48–54

    CrossRef  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411):329–335

    CrossRef  Google Scholar 

  • Gifuni I, Olivieri G, Pollio A, Franco TT, Marzocchella A (2017) Autotrophic starch production by Chlamydomonas species. J Appl Phycol 29(1):105–114

    CrossRef  Google Scholar 

  • Goh SH, Alitheen NB, Yusoff FM, Yap SK, Loh SP (2014) Crude ethyl acetate extract of marine microalga, Chaetoceros calcitrans, induces apoptosis in MDA-MB-231 breast cancer cells. Pharmacogn Mag 10(37):1–8

    Google Scholar 

  • Goldman JC, Ryther JH, Williams LD (1975) Mass production of marine algae in outdoor cultures. Nature 254:594

    CrossRef  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2016) Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production. Bioresour Tech 200:279–286

    CrossRef  Google Scholar 

  • Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53

    CrossRef  Google Scholar 

  • Gummert F, Meffert ME, Stratmann H (1953) Nonsterile large-scale culture of Chlorella in greenhouse and open air, In: Burlew JS (ed) Algae culture from laboratory to pilot plant. Carnegie Institution of Washington Publication 600, Washington D.C, pp 166–176

    Google Scholar 

  • Guyon JB, Verge V, Schatt P, Lozano JC, Liennard M (2018) Bouget FY (2018) Comparative analysis of culture conditions for the optimization of carotenoid production in several strains of the picoeukaryote Ostreococcus. Mar Drugs 16:76. https://doi.org/10.3390/md16030076

    CrossRef  Google Scholar 

  • Hall DO, Acién Fernández FG, Guerrero EC, Rao KK, Grima EM (2003) Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73

    CrossRef  Google Scholar 

  • Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city. J Biosci Bioeng 89(2):157–163

    CrossRef  Google Scholar 

  • Hidasi N, Belay A (2018) Diurnal variation of various culture and biochemical parameters of Arthrospira platensis in large-scale outdoor raceway ponds. Algal Res 29:121–129

    CrossRef  Google Scholar 

  • Hirata S, Hayashitani M, Taya M, Tone S (1996) Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collection device. J Ferment Bioeng 81(5):470–472

    Google Scholar 

  • Holdmann C, Schmid-Staiger U, Hornstein H, Hirth T (2018) Keeping the light energy constant—Cultivation of Chlorella sorokiniana at different specific light availabilities and different photoperiods. Algal Res 29:61–70

    CrossRef  Google Scholar 

  • Hu J-Y, Sato T (2017) A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement. Energ Convers Manage 133:558–565

    CrossRef  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51(1):51–60

    CrossRef  Google Scholar 

  • Huang J, Feng F, Wan M (2015) Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics. Bioresour Tech 182:151–159

    CrossRef  Google Scholar 

  • Huesemann M, Williams P, Edmundson S (2017) The laboratory environmental algae pond simulator (LEAPS) photobioreactor: validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina. Algal Res 26:39–46

    CrossRef  Google Scholar 

  • Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. Science Publishers, New Hampshire

    CrossRef  Google Scholar 

  • Javanmardian M, Palsson BO (1991) High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system. Biotechnol Bioeng 38(10):1182–1189

    CrossRef  Google Scholar 

  • Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Tech 128:359–364

    CrossRef  Google Scholar 

  • Jiménez C, Cossı́o BR, Labella D, Xavier Niell F (2003) The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217(1):179–190

    Google Scholar 

  • Jin E-S, Polle JEW, Lee H-K, Hyun S-M, Chang M (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. Korean Soc Appl Microbiol Biotech 13(2):165–174

    Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Tech 101(4):1406–1413

    CrossRef  Google Scholar 

  • Kandilian R, Jesus B, Legrand J, Pilon L, Pruvost J (2017) Light transfer in agar immobilized microalgae cell cultures. J Quant Spectrosc Ra 198:81–92

    CrossRef  Google Scholar 

  • Kandilian R, Soulies A, Pruvost J, Rousseau B, Legrand J, Pilon L (2016) Simple method for measuring the spectral absorption cross-section of microalgae. Chem Eng Sci 146:357–368

    CrossRef  Google Scholar 

  • Koller AP, Wolf L, Brück T, Weuster-Botz D (2018) Studies on the scale-up of biomass production with Scenedesmus spp. in flat-plate gas-lift photobioreactors. Bioproc Biosyst Eng 41(2):213–220

    Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strat Gl 18(1):27–46

    CrossRef  Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1986a) Continued studies of high algal productivities in a shallow flume. Biomass 11(1):39–50

    CrossRef  Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1986b) High algal production rates achieved in a shallow outdoor flume. Biotechnol Bioeng 28(2):191–197

    CrossRef  Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1988a) Mass culture optimization studies with four marine microalgae. Biomass 16(1):19–32

    CrossRef  Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1988b) Optimization of microalgal production in a shallow outdoor flume. Biotechnol Bioeng 32(2):140–147

    CrossRef  Google Scholar 

  • Lee Y-H, Li P-H (2017) Using resonant ultrasound field-incorporated dynamic photobioreactor system to enhance medium replacement process for concentrated microalgae cultivation in continuous mode. Chem Eng Res Des 118:112–120

    CrossRef  Google Scholar 

  • Leonardi RJ, Niizawa I, Irazoqui HA, Heinrich JM (2018) Modeling and simulation of the influence of fractions of blue and red light on the growth of the microalga Scenedesmus quadricauda. Biochem Eng J 129:16–25

    CrossRef  Google Scholar 

  • Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2018) Astaxanthin as feed supplement in aquatic animals. Rev Aquacult 10(3):738–773

    CrossRef  Google Scholar 

  • Lima GM, Teixeira PCN, Teixeira CMLL, Filócomo D, Lage CLS (2018) Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Res 31:157–166

    CrossRef  Google Scholar 

  • Liu J, Wu Y, Wu C (2017) Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour Tech 241:1127–1137

    CrossRef  Google Scholar 

  • López MCG-M, Sánchez EDR, López JLC (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123(3):329–342

    CrossRef  Google Scholar 

  • López-Rosales L, García-Camacho F, Sánchez-Mirón A, Beato EM, Chisti Y, Grima EM (2016) Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. Bioresour Tech 216:845–855

    CrossRef  Google Scholar 

  • Lucker BF, Hall CC, Zegarac R, Kramer DM (2014) The environmental photobioreactor (ePBR): an algal culturing platform for simulating dynamic natural environments. Algal Res 6:242–249

    CrossRef  Google Scholar 

  • Manirafasha E, Murwanashyaka T, Ndikubwimana T (2018) Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresour Tech 255:293–301

    CrossRef  Google Scholar 

  • Maroneze MM, Siqueira SF, Vendruscolo RG (2016) The role of photoperiods on photobioreactors—a potential strategy to reduce costs. Bioresour Technol 219:493–499

    CrossRef  Google Scholar 

  • Marotta G, Scargiali F, Lima S, Caputo G, Grisafi F, Brucato A (2017) Vacuum air-lift bioreactor for microalgae production. Chem Eng Trans 57:925–930

    Google Scholar 

  • Masojídek J, Papáček Š, Sergejevová M (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15(2):239–248

    CrossRef  Google Scholar 

  • Mayers JJ, Ekman Nilsson A, Albers E, Flynn KJ (2017) Nutrients from anaerobic digestion effluents for cultivation of the microalga Nannochloropsis sp.—impact on growth, biochemical composition and the potential for cost and environmental impact savings. Algal Res 26:275–286

    CrossRef  Google Scholar 

  • Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int 2015:519513

    CrossRef  Google Scholar 

  • Miranda JR, Passarinho PC, Gouveia L (2012) Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biot 96(2):555–564

    CrossRef  Google Scholar 

  • Mirón AS, Garcı́a MCC, Gómez AC, Camacho FGa, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16(3):287–297

    Google Scholar 

  • Mituya A, Nyunoya T, Tamiya H (1953) Re-pilot-plant experiments on algal mass culture. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington Publication 600, Washington D.C., pp 173–184

    Google Scholar 

  • Mohamed Ramli N, Verdegem MCJ, Yusoff FM, Zulkifely MK, Verreth JAJ (2017) Removal of ammonium and nitrate in recirculating aquaculture systems by the epiphyte Stigeoclonium nanum immobilized in alginate beads. Aquacult Env Interac 9:213–222

    CrossRef  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18(6):703–712

    CrossRef  Google Scholar 

  • Molina-Miras A, Morales-Amador A, de Vera CR (2018) A pilot-scale bioprocess to produce amphidinols from the marine microalga Amphidinium carterae: Isolation of a novel analogue. Algal Res 31:87–98

    CrossRef  Google Scholar 

  • Mondal M, Ghosh A, Gayen K, Halder G, Tiwari ON (2017a) Carbon dioxide bio-fixation by Chlorella sp. BTA 9031 towards biomass and lipid production: optimization using central composite design approach. J CO2 Util 22:317–329

    Google Scholar 

  • Mondal M, Ghosh A, Tiwari ON (2017b) Influence of carbon sources and light intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional modes. Energ Convers Manage 145:247–254

    CrossRef  Google Scholar 

  • Morais MG, Radmann EM, Andrade MR, Teixeira GG, Brusch LRF, Costa JAV (2009) Pilot scale semi-continuous production of Spirulina biomass in southern Brazil. Aquaculture 294(1):60–64

    CrossRef  Google Scholar 

  • Moreno J, Vargas MÁ, Rodrı (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20(4):191–197

    Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2002) Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol Bioeng 77(2):155–162

    CrossRef  Google Scholar 

  • Murray AM, Fotidis IA, Isenschmid A, Haxthausen KRA, Angelidaki I (2017) Wirelessly powered submerged-light illuminated photobioreactors for efficient microalgae cultivation. Algal Res 25:244–251

    CrossRef  Google Scholar 

  • Naderi G, Znad H, Tade MO (2017) Investigating and modelling of light intensity distribution inside algal photobioreactor. Chem Eng Process 122:530–537

    CrossRef  Google Scholar 

  • Natrah FMI, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal–bacterial interactions for aquaculture. Rev Aquacult 6:48–61

    CrossRef  Google Scholar 

  • Natrah FMI, Yusoff FM, Shariff M, Abas F, Mariana NS (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19(6):711–718

    CrossRef  Google Scholar 

  • Norhasyima R, Mahlia T (2018) Advances in CO2 utilization technology: a patent landscape review. J CO2 Util 26:323–335

    Google Scholar 

  • Novoveská L, Zapata AKM, Zabolotney JB, Atwood MC, Sundstrom ER (2016) Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Res 18:86–94

    CrossRef  Google Scholar 

  • Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. In: Osinga R, Tramper J, Burgess JG, Wijffels RH (eds) Prog Ind M 35:289–297

    Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3):499–506

    CrossRef  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15(2):249–257

    CrossRef  Google Scholar 

  • Olivieri G, Salatino P, Marzocchella A (2014) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biot 89(2):178–195

    CrossRef  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Tech 114:542–548

    CrossRef  Google Scholar 

  • Panjiar N, Mishra S, Yadav AN, Verma P (2017) Functional foods from cyanobacteria: an emerging source for functional food products of pharmaceutical importance. In: Gupta VK, Treichel H, Shapaval VO, Oliveira LAd, Tuohy MG (eds) Microbial functional foods and nutraceuticals. Wiley, USA, pp 21–37. https://doi.org/10.1002/9781119048961.ch2

  • Parlevliet D, Moheimani NR (2014) Efficient conversion of solar energy to biomass and electricity. Aquat Biosyst 10:4

    CrossRef  Google Scholar 

  • Peng J, Yuan JP, Wang JH (2012) Effect of diets supplemented with different sources of astaxanthin on the gonad of the sea urchin Anthocidaris crassispina. Nutrients 4(8):922–934

    CrossRef  Google Scholar 

  • Pennington F, Guillard RRL, Liaaen-Jensen S (1988) Carotenoid distribution patterns in Bacillariophyceae (Diatoms). Biochem Syst Ecol 16(7):589–592

    CrossRef  Google Scholar 

  • Pereira EG, Martins MA, Mendes MDSA, Mendes LBB, Nesi AN (2017) Outdoor cultivation of Scenedesmus obliquus BR003 in stirred tanks by airlift. J Braz Assoc Agric Eng. http://dx.doi.org/10.1590/1809–4430

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Tech 102(1):17–25

    CrossRef  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177 ENG LIFE SCI

    Google Scholar 

  • Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) As integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9(2):113–119

    CrossRef  Google Scholar 

  • Qin C, Lei Y, Wu J (2018) Light/dark cycle enhancement and energy consumption of tubular microalgal photobioreactors with discrete double inclined ribs. Bioresour. Bioprocess 5:28. https://doi.org/10.1186/s40643-018-0214-8

  • Rahaman MSA, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2011) A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sust Energ Rev 15(8):4002–4012; Rastogi RP, Pandey A, Larroche C, Madamwar D (2018) Algal green energy—R&D and technological perspectives for biodiesel production. Renew Sust Energ Rev 82:2946–2969

    Google Scholar 

  • Rezvani F, Sarrafzadeh MH, Seo SH, Oh HM (2017) Phosphorus optimization for simultaneous nitrate-contaminated groundwater treatment and algae biomass production using Ettlia sp. Bioresour Tech 244(Pt 1):785–792

    CrossRef  Google Scholar 

  • Richmond A, Cheng-Wu Z (2001) Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotechnol 85(3):259–269

    Google Scholar 

  • Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J Appl Phycol 2(3):195–206

    CrossRef  Google Scholar 

  • Rocha RP, Machado M, Vaz MGMV (2017) Exploring the metabolic and physiological diversity of native microalgal strains (Chlorophyta) isolated from tropical freshwater reservoirs. Algal Res 28:139–150

    CrossRef  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    CrossRef  Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400

    CrossRef  Google Scholar 

  • Saeid A, Chojnacka K (2015) Toward production of microalgae in photobioreactors under temperate climate. Chem Eng Res Des 93:377–391

    CrossRef  Google Scholar 

  • Sánchez Mirón A, Cerón Garcı́a M-C, Garcı́a Camacho F, Molina Grima E, Chisti Y (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Tech 31(7):1015–1023

    Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, Garcı́a Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70(1):249–270

    Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1(1):20–43

    CrossRef  Google Scholar 

  • Schultze LKP, Simon M-V, Li T, Langenbach D, Podola B, Melkonian M (2015) High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal Res 8:37–44

    CrossRef  Google Scholar 

  • Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32(8):422–430

    CrossRef  Google Scholar 

  • Schulze PSC, Pereira HGC, Santos TFC (2016) Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Res 16:387–398

    CrossRef  Google Scholar 

  • Seo SH, Ha JS, Yoo C (2017) Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat. Bioresour Tech 244(Pt 1):621–628

    Google Scholar 

  • Seshadri CV, Thomas S (1979) Mass culture of spirulina using low-cost nutrients. Biotechnol Lett 1(7):287–291

    CrossRef  Google Scholar 

  • Sun Y, Huang Y, Liao Q, Fu Q, Zhu X (2016) Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Bioresour Tech 207:31–38

    CrossRef  Google Scholar 

  • Thawechai T, Cheirsilp B, Louhasakul Y, Boonsawang P, Prasertsan P (2016) Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies. Bioresour Tech 219:139–149

    CrossRef  Google Scholar 

  • Torzillo G, Carlozzi P, Pushparaj B, Montaini E, Materassi R (1993) A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng 42(7):891–898

    CrossRef  Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11(1):61–74

    CrossRef  Google Scholar 

  • Tredici MR, Carlozzi P, Chini Zittelli G, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Tech 38(2):153–159

    CrossRef  Google Scholar 

  • Ugwu C, Ogbonna J, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biot 58(5):600–607

    CrossRef  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Tech 99(10):4021–4028

    CrossRef  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2005) Light/dark cyclic movement of algal culture (Synechocystis aquatilis) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass. Biotechnol Lett 27(2):75–78

    CrossRef  Google Scholar 

  • Vadiveloo A, Moheimani NR, Cosgrove JJ, Bahri PA, Parlevliet D (2015) Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Res 8:121–127

    CrossRef  Google Scholar 

  • Vallejos-Vidal V, Reyes-Lopez F, Teles M, MacKenzie S (2016) The response of fish to immunostimulant diets. Fish Shellfish Immun 56:116–121

    CrossRef  Google Scholar 

  • Vergara C, Muñoz R, Campos JL, Seeger M, Jeison D (2016) Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int Biodeter Biodegr 114:116–121

    CrossRef  Google Scholar 

  • Watanabe A, Hattori A, Fujita Y, Kiyohara T (1959) Large scale culture of a blue-green alga, Tolypothrix tenuis, utilizing hot spring and natural gas as heat and carbon dioxide sources. J Gen Appl Microbiol 5(1–2):51–57

    CrossRef  Google Scholar 

  • Willette S, Gill SS, Dungan B (2018) Alterations in lipidome and metabolome profiles of Nannochloropsis salina in response to reduced culture temperature during sinusoidal temperature and light. Algal Res 32:79–92

    CrossRef  Google Scholar 

  • Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11(7):2667–2681

    CrossRef  Google Scholar 

  • Yan C, Muñoz R, Zhu L, Wang Y (2016) The effects of various LED (light emitting diode) lighting strategies on simultaneous biogas upgrading and biogas slurry nutrient reduction by using of microalgae Chlorella sp. Energy 106:554–561

    CrossRef  Google Scholar 

  • Ye Q, Cheng J, Guo W, Xu J, Li K, Zhou J (2018) Serial lantern-shaped draft tube enhanced flashing light effect for improving CO2 fixation with microalgae in a gas-lift circumflux column photobioreactor. Bioresour Tech 255:156–162

    CrossRef  Google Scholar 

  • Zhang CW, Richmond A (2003) Sustainable, high-yielding outdoor mass cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galbana in vertical plate reactors. Mar Biotechnol 5(3):302–310

    Google Scholar 

  • Zhang J-Y, Qi H, He Z-Z, Yu X-Y, Ruan L-M (2017a) Investigation of light transfer procedure and photobiological hydrogen production of microalgae in photobioreactors at different locations of China. Int J Hydrogen Energ 42(31):19709–19722

    CrossRef  Google Scholar 

  • Zhang T (2013) Dynamics of fluid and light intensity in mechanically stirred photobioreactor. J Biotechnol 168(1):107–116

    CrossRef  Google Scholar 

  • Zhang Z, Huang JJ, Sun D, Lee Y, Chen F (2017b) Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresour Tech 224:515–522

    CrossRef  Google Scholar 

  • Zhu L, Wang Z, Takala J (2013) Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Tech 137:318–325

    CrossRef  Google Scholar 

  • Zhuang L-L, Azimi Y, Yu D, Wu Y-H, Hu H-Y (2018) Effects of nitrogen and phosphorus concentrations on the growth of microalgae Scenedesmus. LX1 in suspended-solid phase photobioreactors (ssPBR). Biomass Bioenerg 109:47–53

    CrossRef  Google Scholar 

  • Zijffers J-WF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145(2):316–327

    CrossRef  Google Scholar 

Download references

Acknowledgements

This study is partially supported by the SATREPS-COSMOS Malaysia-Japan collaborative project under the auspices of the Department of Higher Education, Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatimah Md. Yusoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Yusoff, F.M., Nagao, N., Imaizumi, Y., Toda, T. (2019). Bioreactor for Microalgal Cultivation Systems: Strategy and Development. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)