Skip to main content

Photobiological Production of Biohydrogen: Recent Advances and Strategy

  • Chapter
  • First Online:

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 10))

Abstract

Hydrogen is a well-kept, renewable, carbon-neutral, and energy-efficient fuel which is presently being produced entirely with the reformation of fossil fuels. But to be effective and utilizable at an industrial scale, certain issues from economically and environmentally sustainable production point of view still needs clarification. Species range from photosynthetic fermentative bacteria to green microalgae and cyanobacteria have the capacity to produce hydrogen. Producing hydrogen biologically represents a possible channel for the sustainable generation of hydrogen over a large scale, required to fuel a hydrogen economy in near future. Biological processes compared to conventional or physical production methods manifest various edges while conducting at ambient pressure and temperature conditions, without using precious metals for catalyzing reactions. Producing hydrogen biologically is a promising route from an environmental friendly viewpoint. Photobiological hydrogen production is examined as one of the promising technology and started to become a mature technology with significant advances in substituting energy derived from fossil fuels. Withal, the chief bottleneck while developing a practical approach is the low yield associated with it, approximately around 25%, which is comparatively well below from the production of other biofuels with the use of same feedstocks. This chapter introduces the microorganisms for the biohydrogen production, production processes, and types of photobioreactors for the production of hydrogen following certain challenges that exist in this very particular area along with the environmental and economic analysis of the same.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akkermana I, Janssen M, Rochac J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208

    Article  Google Scholar 

  • Amos WA (2004) Updated cost analysis of photobiological hydrogen production from Chlamydomonas reinhardtii green algae. Milestone Completion Report, National Renewable Energy Laboratory, Golden, CO, NREL/MP-560-35593

    Google Scholar 

  • Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological: fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173

    Article  Google Scholar 

  • Basak N, Das D (2007a) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microb Biot 23:31–42

    Article  Google Scholar 

  • Basak N, Das D (2007b) Microbial biohydrogen production by Rhodobacter sphaeroides O.U.001 in photobioreactor. In: Proceedings of the world congress on engineering and computer science (WCECS), pp 24–26

    Google Scholar 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels frontiers in bioengineering and biotechnology. Mar Biotechnol 90:1–13

    Google Scholar 

  • Benemann JR (2000) Hydrogen production from microalgae. J Appl Phycol 12:291–300

    Article  Google Scholar 

  • Bhutto AW, Bazmi AA, Kardar MN, Yaseen M, Zahedi G, Karim K (2011) Developments in hydrogen production through microbial processes; Pakistan’s prospective. Int J Chem Environ Eng 02:189–205

    Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  Google Scholar 

  • Boran E, Özgür E, Vander Burg J, Yücel M, Gündüz U, Eroglu I (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:29–35

    Article  Google Scholar 

  • Chang FY, Lin CY (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29:33–39

    Article  Google Scholar 

  • Chen CY, Chang JS (2006) Enhancing phototropic hydrogen production by solid carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41:2041–2049

    Article  Google Scholar 

  • Chen WH, Chen SY, Khanal SK, Sung S (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrog Energy 31:2170–2178

    Article  Google Scholar 

  • Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrog Energy 33:4755–4762

    Article  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 21:6046–6057

    Article  Google Scholar 

  • Das D, Veziroglo TN (2011) Hydrogen production by biological process: a survey of the literature. Int J Hydrog Energy 26:13–28

    Article  Google Scholar 

  • Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35:10218–10238

    Article  Google Scholar 

  • Efremenko EN, Nikolskaya AB, Lyagin IV, Senko OV, Makhlis TA, Stepanov NA et al (2012) Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour Technol 114:342–348

    Article  Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    Article  Google Scholar 

  • Fan KS, Kan N, Lay J (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol 97:84–89

    Article  Google Scholar 

  • Ferreira AF, Ribau JP, Silva CM (2011) Energy consumption and CO2 emissions of potato peel and sugarcane biohydrogen production pathways, applied to Portuguese road transportation. Int J Hydrog Energy 36:13547–13558

    Article  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of Fe-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. J Biol Chem 276:6125–6132

    Article  Google Scholar 

  • Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T et al (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758

    Article  Google Scholar 

  • García-Galán MJ, Gutiérrez R, Uggetti E, Matamoros V, García J, Ferrer I (2018) Use of full-scale hybrid horizontal tubular photobioreactors to process agricultural runoff. Biosyst Eng 166:138–149

    Article  Google Scholar 

  • Garrido IM (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  Google Scholar 

  • Geada P, Vasconcelos V, Vicente A, Fernandes B (2017) Microalgal biomass cultivation. In: Rastogi RP, Madamwar D, Pandey A (eds) Algal green chemistry recent progress in biotechnology. Elsevier, Amsterdam, pp 257–284

    Chapter  Google Scholar 

  • Ghirardi ML, Mohanty P (2010) Oxygenic hydrogen production-current status of the technology. Curr Sci India 98:499–507

    Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E et al (2000) Microalgae: a green source of renewable hydrogen. Trends Biotechnol 18:506–511

    Article  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Manaess PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    Article  Google Scholar 

  • Gosse JL, Engel BJ, Hui JCH, Harwood CS, Flickinger MC (2010) Preservation of H2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures. Biotechnol Prog 26:907–918

    Google Scholar 

  • Hallenbeck PC (2011) Microbial paths to renewable hydrogen production. Biofuels 2:285–302

    Article  Google Scholar 

  • Hallenbeck P, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J of Hydrog Energy 27:1185–1193

    Article  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297

    Article  Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  Google Scholar 

  • Happe T, Kaminski A (2001) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem (in press)

    Google Scholar 

  • Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626

    Article  Google Scholar 

  • James BD, Baum GN, Perez J, Baum KN (2009) Techno-economic boundary analysis of biological pathways to hydrogen production. In: National renewable energy laboratory, subcontract report NREL/SR-560-46674. Arlington, Virginia: Directed Technologies, Inc, pp 1e193

    Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  Google Scholar 

  • Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568

    Article  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production—a review. Bioresour Technol 243:1194–1206

    Article  Google Scholar 

  • Kim EJ, Kim JS, Kim MS, Lee JK (2006) Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. Int J Hydrog Energy 31:531–538

    Article  Google Scholar 

  • Koku H, Gunduz U, Yucel M, Turker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 28:381–388

    Article  Google Scholar 

  • Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    Article  Google Scholar 

  • Kosourov SN, Ghirardi ML, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36:2044–2048

    Article  Google Scholar 

  • Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190

    Article  Google Scholar 

  • Kraemer JT, Bagley DM (2008) Optimization and design of nitrogen sparged fermentative hydrogen production bioreactors. Int J Hydrog Energy 33:6558–6565

    Article  Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:238–243

    Article  Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 04:957–970

    Article  Google Scholar 

  • Lambertz C, Leidel N, Havelius KGV, Noth J, Chernev P, Winkler M, Happe T, Haumann M (2011) Oxygen reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J Biol Chem 286:40614–40623

    Article  Google Scholar 

  • Laurinavichene V, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen photoproduction by immobilized, sulfur deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy 31:659–667

    Article  Google Scholar 

  • Lay JJ (2002) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269–278

    Article  Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 4:307–315

    Article  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  Google Scholar 

  • Liebgott PP, Leroux F, Burlat B et al (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6:63–70

    Article  Google Scholar 

  • Lindberg P, Schtuz K, Happe T, Lindblad P (2002) A hydrogen producing, hydrogenase—a free mutant strain of Nostoc punctiforme ATCC29133. Int J Hydrog Energy 27:1291–1296

    Article  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  Google Scholar 

  • Madigan MT, Martinko JM (2006) Biology of microorganisms. Pearson Prentice Hall, Upper saddle river, NJ

    Google Scholar 

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33:279–286

    Article  Google Scholar 

  • Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP (2010) Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water. Appl Environ Microbiol 76:6741–6750

    Article  Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges, and prospects. Int J Hydrog Energy 27:1217–1228

    Article  Google Scholar 

  • Melis A, Melnicki M (2006) Integrated biological hydrogen production. Int J Hydrog Energy 31:1563–1573

    Article  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000a) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  Google Scholar 

  • Melis A, Zang L, Forestier M, Ghirardi ML, Seibert M (2000b) Sustained phtobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green algae Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    Google Scholar 

  • Min HT, Sherman LA (2010) Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76:4293–4301

    Article  Google Scholar 

  • Mohan SV, Bhaskar VY, Krishna MT, Rao NC, Lalit V, Sarma PN (2007) Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. Int J Hydrog Energy 32:2286–2295

    Article  Google Scholar 

  • Morita M, Watanable Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69:693–698

    Article  Google Scholar 

  • Nagarajan D, Lee DJ, Kondo A, Chang JS (2017) Recent insights into biohydrogen production by microalgae—from biophotolysis to dark fermentation. Bioresour Technol 227:373–387

    Article  Google Scholar 

  • Nobre BP, Villalobos F, Barragan BE, Oliveira AC, Batista AP, Marques PASS et al (2013) A biorefinery from Nannochloropsis sp. Microalgae extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136

    Article  Google Scholar 

  • Nowak J, Florek M, Kwiatek W, Lekki J, Chevallier P, Zieba E et al (2005) Composite structure of wood cells in petrified wood. Mater Sci Eng 25:119–130

    Article  Google Scholar 

  • Oey M, Sawyer AL, Ross IL, Hankamer B (2016) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14:1487–1499

    Article  Google Scholar 

  • Ozgur E, Mars AE, Peksel B, Louwerse A, Y€ucel M, G€und€uz U et al (2010) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrog Energy 35:511–517

    Google Scholar 

  • Pilon L, Berberoglu H (2014) Photobiological hydrogen production. In: Sherif SA, Yogi Goswami D, (Lee) Stefanakos EK, Steinfeld A (eds) Handbook of hydrogen energy

    Google Scholar 

  • Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems, a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy 27:1257–1264

    Article  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  Google Scholar 

  • Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31

    Article  Google Scholar 

  • Romagnoli F, Blumberga D, Pilicka I (2011) Life-cycle assessment of biohydrogen production in photosynthetic processes. Int J Hydrog Energy 36:7866–7871

    Article  Google Scholar 

  • Sakurai H, Masukawa H (2007) Promoting R&D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Mar Biotechnol 9:128–145

    Article  Google Scholar 

  • Sakurai H, Masukawa H, Kitashima M, Inoue K (2010) A feasibility study of large-scale photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Adv Exp Med Biol 675:291–303

    Article  Google Scholar 

  • Saratale GD, Chen SD, Lo YC, Saratale RG, Chang JS (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation—a review. J Sci Ind Res India 67:962–979

    Google Scholar 

  • Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep 15:63–69

    Article  Google Scholar 

  • Sherrif SA, Barbir FA, Veziroglu TN (2003) Principles of hydrogen energy production, storage and utilization. J Sci Ind Res 62:46–63

    Google Scholar 

  • Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29:1355–1363

    Google Scholar 

  • Show KY, Lee DJ, Chang JS (2011) Bioreactor and process design for biohydrogen production. Bioresour Technol 102:8524–8533

    Article  Google Scholar 

  • Singh SS, Upadhyay RS, Mishra AK (2008) Physiological interactions in Azolla-Anabaena system adapting to the salt stress. J Plant Interact 3:145–155

    Article  Google Scholar 

  • Skjånes K, Andersen U, Heidorn T, Borgvang SA (2016) Design and construction of a photobioreactor for hydrogen production, including status in the field. J Appl Phycol 28:2205–2223

    Google Scholar 

  • Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102:8589–8604

    Article  Google Scholar 

  • Stal LJ, Krumbein WE (1987) Temporal separation of nitrogen fixation and photosynthesis in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. Arch Microbiol 149:76–80

    Article  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C et al (2009) How oxygen attacks FeFe hydrogenases from photosynthetic organisms. Proc Nat Acad Sci USA 106:17331–17336

    Article  Google Scholar 

  • Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147:297–301

    Article  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    Article  Google Scholar 

  • Tamagnini P, Leita˜o E, Oliveira P, Ferreira D, Pinto F, Harris D et al (2007) Cyanobacterial hydrogenases: diversity, regulation, and applications. FEMS Microbiol Rev 31:692–720

    Google Scholar 

  • Taoa Y, Hea Y, Wub Y, Liub F, Lib X, Zong W, Zhou Z (2008) Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrog Energy 33:963–973

    Article  Google Scholar 

  • Tsygankov A (2001) Hydrogen production by purple bacteria: immobilized versus suspension cultures. In: Miyake J, Matsunaga T, Pietro AS (eds) Biohydrogen II. Elsevier Science Ltd, Amsterdam, pp 229–243

    Google Scholar 

  • Wang LL, Yi T, Zao XZ (2014) A novel flat plate algal bioreactor with horizontal baffles: Structural optimization and cultivation performance. Bioresour Technol 164:20–27

    Article  Google Scholar 

  • Weiss A, Patyk A, Schebek L (2011) Nutrient recycling and energy production with microalgae from a life cycle perspective. In: Gesellschaftzur Forderung des Instituts fur Siedlungswasserwirtschaft der Technischen Universitat Braunschweig e.V (ed), Tagungsband 3. Internationales Symposium “Re-Water Braunschweig” 21. und 22. November 2011. Braunschweig: Institut fur Siedlungswasserwirtschaft (vol 81)

    Google Scholar 

  • Westwood D (2002) The microbiology of drinking water—part 1—water quality and public health. U.K, Environmental Agency, Bristol, U.K.

    Google Scholar 

  • Weyman PD, Pratte B, Thiel T (2010) Hydrogen production in nitrogenase mutants in Anabaena variabilis. FEMS Microbiol Lett 304:55–61

    Article  Google Scholar 

  • Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T (2002) [Fe]-hydrogenases in green algae: photo: fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27:1431–1439

    Article  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Fermentative hydrogen production from lipid-extracted micro algal biomass residues. Appl Energy 88:3468–3472

    Article  Google Scholar 

  • Zhua H, Fang HHP, Zhang T, Beaudette LA (2007) Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 32:4112–4118

    Article  Google Scholar 

Download references

Acknowledgements

I thankfully acknowledge Professor Sanjeev Puri for trusting in me and bestowing me this lucky chance to explore and gain knowledge and excel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Arya, S.K. (2019). Photobiological Production of Biohydrogen: Recent Advances and Strategy. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics