Skip to main content

Biochemical Strategies for Enhanced Biofuel Production

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

The socio-environmental issues such as increasing world population, globalization, environmental concerns, and energy security lead to utmost need for utilizing biodegradable agricultural wastes for the production of biofuels. Therefore, the focus is to deploy technologies for utilization of renewable lignocellulosic sources, which are available worldwide in copious amounts, for the production of second-generation biofuels. Lignocellulosic ethanol is considered as one of the environmentally-friendly alternatives to fossil fuel, which is produced by exploiting lignocellulosic biomass using different techniques. There are three major steps involved in bioethanol production: pretreatment, enzymatic saccharification, and fermentation. Pretreatment allows increasing surface area and getting accessible cellulosic material to hydrolytic enzymes; this is further hydrolyzed to fermentable pentose and hexose sugars through enzymatic saccharification. The overall economy of the process depends on pretreatment, enzymatic saccharification, and utilization of both pentose and hexose sugars to ethanol. The integrated fermentation approaches result in simultaneous saccharification and fermentation to enhance bioethanol yield and productivity. The development of industrial strains for bioethanol production is another challenge to utilize both pentose and hexose sugars, and withstand under adverse environmental conditions, i.e., high ethanol and inhibitors tolerance, and tolerance to high temperature and low pH. The present chapter focuses on pretreatment, enzymatic and co-fermentation strategies, integrated approaches, and optimization on process parameters to enhance the lignocellulosic ethanol yield for sustainable biofuel production.

Keywords

  • Bioethanol
  • Biofuels
  • Enzymatic saccharification
  • Fermentation
  • Lignocellulosic biomass
  • Pretreatment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_2
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

References

  • Aden A, Foust T (2009) Techno-economic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellul 16(4):535–545

    CrossRef  Google Scholar 

  • Ajbar AH, Ali E (2017) Study of advanced control of ethanol production through continuous fermentation. J King South Uni-Eng Sci 29(1):1–11

    CrossRef  Google Scholar 

  • Amin FR, Khalid H, Zhang H, Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Exp 7:1–12

    CrossRef  Google Scholar 

  • Ammar JB, Lanoiselle JL, Lebovka NI, Hecke E, Vorobiev E (2011) Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity. J Food Sci 76(1):90–97

    CrossRef  Google Scholar 

  • Ask M, Olofsson T, Felice D, Ruohonen L, Penttila M, Liden G, Olsson L (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47(10):1452–1459

    CrossRef  Google Scholar 

  • Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophy Rep 10:52–61

    Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conserv Manag 52(2):858–875

    CrossRef  Google Scholar 

  • Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 33(12):1680–1686

    CrossRef  Google Scholar 

  • Barakat A, Laigle CM, Solhy A, Arancon RAD, De Vries H, Luque R (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RCS Adv 4(89):48109–48127

    Google Scholar 

  • Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Belloso OM, Rajchert DW, Lebovka N, Vorobiev E (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77(4):773–798

    CrossRef  Google Scholar 

  • BC International Corporation, 980 Washington Street, Dedham, MA 02026. http://www.bcintlcorp.com. Accessed 10 June 2018

  • Beukes N, Pletschke BI (2010) Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicelluloses. Bioresour Technol 101(12):4472–4478

    CrossRef  Google Scholar 

  • Bharti, Chauhan M (2016) Bioethanol production using Saccharomyces cerevisiae with different perspectives: substrate, growth variables, inhibitor reduction and immobilization. Ferment Technol 5(2):1–4

    Google Scholar 

  • Bhatt SM, Shilpa (2014) Bioethanol production from economical agro waste (groundnut shell) in SSF mode. Res J Pharm Biol Chem Sci 5(6):1210–1218

    Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice: an overview. Bioresour Technol 101(13):4767–4774

    CrossRef  Google Scholar 

  • Borbala E, Mats G, Guido Z (2013) Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass Bioenergy 56:506–514

    CrossRef  Google Scholar 

  • Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J Biomed Biotechnol 2012:1–15

    CrossRef  Google Scholar 

  • Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100(22):9451–9467

    CrossRef  Google Scholar 

  • Cavalheiro AA, Monteiro G (2013) Solving ethanol production problems with genetically modified yeast strains. Braz J Microbiol 44(3):665–671

    CrossRef  Google Scholar 

  • Chandel AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2(1):14–32

    Google Scholar 

  • Chang YH, Chang KS, Chen CY, Hsu CL, Chang TC, Jang HD (2018) Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Ferment 4(2):1–12

    CrossRef  Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3(5):415–431

    Google Scholar 

  • Cheng NG, Hasan M, Kumoro AC (2009) Production of ethanol by fed-batch fermentation. Pertanika J Sci Technol 17(2):399–408

    Google Scholar 

  • Choi GW, Kang HW, Moon SK (2009) Repeated batch fermentation using flocculent hybrid Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Appl Micribiol Biotechnol 84(2):261–269

    CrossRef  Google Scholar 

  • Choi GW, Um HJ, Kim M, Kim Y, Kang HW, Chung BW, Kim YH (2010) Isolation and characterization of ethanol-producing Schizosaccharomyces pombe CHFY0201. J Microbiol Biotechnol 20(4):828–834

    Google Scholar 

  • Chovau S, Degrauwe D, Bruggen BV (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bioethanol. Renew Sust Energ Rev 26:307–321

    CrossRef  Google Scholar 

  • Crawford JT, Shan CW, Budsberg E, Morgan H, Bura R, Gustafson R (2016) Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment. Biotechnol Biofuels 23:1–16

    Google Scholar 

  • Cruz JM, Dominguez JM, Dominguez H, Parajo JC (2002) Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnol 14(1–2):79–97

    Google Scholar 

  • Cubero MTG, Benito GG, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100(4):1608–1613

    CrossRef  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5(6):578–595

    CrossRef  Google Scholar 

  • Den W, Sharma VK, Lee M, Nadadur G, Varma RS (2018) Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value added chemicals. Front Chem 6:1–23

    CrossRef  Google Scholar 

  • Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269

    CrossRef  Google Scholar 

  • Dhiman SS, David A, Braband VW, Hussein A, Sani RK (2017) Improved bioethanol production from corn stover: role of enzymes, inducers and simultaneous product recovery. Appl Energy 208:1420–1429

    CrossRef  Google Scholar 

  • Divate NR, Chen GH, Divate RD, Ou BR, Chung YC (2017) Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance. Bioeng 8(5):524–535

    Google Scholar 

  • Dogan A, Demirci S, Aytekin AO, Sahin F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174(1):28–42

    CrossRef  Google Scholar 

  • Dong C, Wang Y, Zhang H, Leu SY (2018) Feasibility of high concentration cellulosic bioethanol production from undetoxified whole Monterey pine slurry. Bioresour Technol 250:102–109

    CrossRef  Google Scholar 

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    CrossRef  Google Scholar 

  • Dyk JS, Pletschke BI (2012) A review of lignocellulosic bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480

    CrossRef  Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96(18):2019–2025

    CrossRef  Google Scholar 

  • Erdei B, Franko B, Galbe M, Zacchi G (2012) Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol Biofuels 5:1–12

    CrossRef  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S (2011) Optimization for the production of cellulose enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:1–8

    CrossRef  Google Scholar 

  • Ge JP, Zhang LY, Ping WX, Zhang MY, Shen Y, Song G (2014) Genetically engineered Saccharomyces cerevisiae strain that can utilize both xylose and glucose for fermentation. Appl Mech Mater 448–453:1637–1643

    Google Scholar 

  • Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101(13):4842–4850

    CrossRef  Google Scholar 

  • Golaszewski J, Zelazna K, Karwowska A, Ziety EO (2012) Conceptual framework of bioethanol production from lignocellulose for agricultural profitability. Environ Biotechnol 8(1):15–27

    Google Scholar 

  • Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husk. Biotechnol Lett 31(9):1315–1319

    CrossRef  Google Scholar 

  • Grassick A, Murray P, Thompson R, Collins C, Byrnes L, Birrane G, Higgins T, Tuohy M (2004) Three-dimensional structure of a thermostable native cellobiohydrolase, CBH 1B and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem 271(22):4495–4506

    CrossRef  Google Scholar 

  • Gupta R, Lee YY (2009) Pretreatment of hybrid poplar by aqueous ammonia. Biotechnol Prog 25(2):357–364

    CrossRef  Google Scholar 

  • Hagerdal BH, Karhumaa K, Fonseca C, Martins IS, Grauslund G (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    Google Scholar 

  • Hamelinck CN, Hooijdonk GV, Faaji APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28(4):384–410

    CrossRef  Google Scholar 

  • Hasunuma T, Kondo A (2012) Development of yeast factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30(6):1207–1218

    CrossRef  Google Scholar 

  • Ilmen M, Saloheimo A, Onnel M, Pentilla ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63(4):1298–1306

    Google Scholar 

  • Inoue H, Fujimoto S, Sakaki T (2016) Two-step hot compressed water treatment of douglas fir for efficient total sugar recovery by enzymatic hydrolysis. BioResources 11(2):5124–5137

    CrossRef  Google Scholar 

  • Iogen Corporation, Marketing and Communications, 8 Colonnade Rd., Ottawa, ON, Canada. http://www.iogen.ca. Accessed 10 June 2018

  • Ivetic DZ, Omorjan RP, Dordevic TR, Antov MG (2017) The impact of ultrasound pretreatment on the enzymatic hydrolysis of cellulose from sugar beet shreds: modeling of the experimental results. Environ Prog Sustain Energy 36(4):1164–1172

    CrossRef  Google Scholar 

  • Jain A, Chaurasia SP (2014) Bioethanol production in membrane bioreactor (MBR) system: a review. Int J Environ Res Dev 4(4):387–394

    Google Scholar 

  • Jeremic D, Goacher RE, Yan R, Karunakaran C, Master ER (2014) Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuring xylanase. Biotechnol Biofuels 7(1):1–12

    CrossRef  Google Scholar 

  • Jin M, Balan V, Gunawan C, Dale BE (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108(6):1290–1297

    CrossRef  Google Scholar 

  • Joshi B, Bhatt MR, Sharma D, Joshi J, Malla R, Sreerama L (2011) Lignocellulosic ethanol production: current practices and recent developments. Biotechnol Mol Biol Rev 6(8):172–182

    Google Scholar 

  • Junior MM, Batistote M, Cilli EM, Ernandes JR (2009) Sucrose fermentation by Brazilian ethanol production yeast in media containing structurally complex nitrogen sources. J Inst Brewing 115(3):191–197

    CrossRef  Google Scholar 

  • Kamzon MA, Abderafi S, Bounahmidi T (2016) Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. Int J Hydrogen Energy 41(45):20880–20896

    CrossRef  Google Scholar 

  • Kang KE, Chung DP, Kim Y, Chung BW, Choi GW (2015) High titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system. Fuel 145:18–24

    CrossRef  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priories. Sci World J 2014:1–13

    Google Scholar 

  • Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89(1):20–28

    CrossRef  Google Scholar 

  • Kefale A, Redi M, Asfaw A (2012) Potential of bioethanol production and optimization test from agricultural waste: the case of wet coffee processing waste pulp. Int J Renew Energy Res 2(3):446–450

    Google Scholar 

  • Kim D (2018) Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Mol 23(2):1–21

    Google Scholar 

  • Kim KH, Tucker M, Nguyen Q (2005) Conversion of bark rich biomass mixture into fermentable sugars by two stage dilute acid catalyzed hydrolysis. Bioresour Technol 96(11):1249–1255

    CrossRef  Google Scholar 

  • Ko JK, Jung JH, Altpeter F, Kannan B, Kim HE, Kim KH, Alper HS, Um Y, Lee SM (2018) Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain. Bioresour Technol 256:312–320

    CrossRef  Google Scholar 

  • Koppolu V, Vasigala VKR (2016) Role of Escherichia coli in biofuel production. Microbiol Insights 9:29–35

    CrossRef  Google Scholar 

  • Kricka W, Fitzpatrick J, Bond U (2014) Metabolic engineering of yeasts by heterogenous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Micribiol 5:1–11

    Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A (2010) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101(21):8348–8354

    CrossRef  Google Scholar 

  • Kumar D, Murthy GS (2013) Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnol Biofuels 6(1):1–20

    CrossRef  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    CrossRef  Google Scholar 

  • Kurian JK, Nair GR, Hussain A, Raghavan GSV (2013) Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sustain Energy Rev 25:205–219

    CrossRef  Google Scholar 

  • Lali A (2016) Biofuels for India: what, when and how. Curr Sci 110(4):552–555

    CrossRef  Google Scholar 

  • Lebovka NI, Bazhal MI, Vorobiev E (2000) Simulation and experimental investigation of food material breakage using pulsed electric field treatment. J Food Eng 44(4):213–223

    CrossRef  Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906

    CrossRef  Google Scholar 

  • Li C, Yoshimoto M, Fukunaga K, Nakao K (2007) Characterization and immobilization of liposome-bound cellulose for hydrolysis of insoluble cellulose. Bioresour Technol 98(7):1366–1372

    CrossRef  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642

    CrossRef  Google Scholar 

  • Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S (2012) Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47:395–401

    CrossRef  Google Scholar 

  • Littlejohns J, Rehmann L, Murdy R, Oo A, Neill S (2018) Current state and future prospects for liquid biofuels in Canada. Biofuel Res J 5(1):759–779

    CrossRef  Google Scholar 

  • Liu ZH, Chen HZ (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam explored corn stover at high solid loading. Bioresour Technol 201:15–26

    CrossRef  Google Scholar 

  • Lugani Y, Sooch BS (2018) Insights into fungal xylose reductases and its applications in xylitol production. In: Kumar S, Dheeran P, Taherzadeh M, Khanal S (eds) Fungal biorefineries. Springer Nature, Switzerland, pp 121–144

    CrossRef  Google Scholar 

  • Lukajtis R, Kucharska K, Holowacz I, Rybarczyk P, Wychodnik K, Slupek E, Nowak P, Kaminski M (2018) Comparison and optimization of saccharification conditions of alkaline pretreated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation. Energ 11(3):1–24

    Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    CrossRef  Google Scholar 

  • Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    CrossRef  Google Scholar 

  • Madadi M, Tu Y, Abbas A (2017) Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electron J Biol 13(2):135–143

    Google Scholar 

  • Marcuschamer DK, Popiel PO, Simmons BA, Blanch HW (2010) Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioenergy 34(12):1914–1921

    CrossRef  Google Scholar 

  • Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609

    Google Scholar 

  • McEwen JT, Atsumi S (2012) Alternative biofuel production in non-natural hosts. Curr Opin Biotechnol 23(5):744–750

    CrossRef  Google Scholar 

  • Menegol D, Scholl AL, Dillon AJP, Camassola M (2016) Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum) used as a substrate for cellulose and xylanase production in submerged cultivation. Bioprocess Biosyst Eng 39(9):1455–1464

    CrossRef  Google Scholar 

  • Meneses LR, Raud M, Orupold K, Kikas T (2017) Second-generation bioethanol production: a review of strategies for waste valorization. Agronomy Res 15(3):830–847

    Google Scholar 

  • Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5(1):928–938

    Google Scholar 

  • Monavari S, Galbe M, Zacchi G (2009) Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresour Technol 100(24):6312–6316

    CrossRef  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    CrossRef  Google Scholar 

  • Muktham R, Bhargava SK, Bankupalli S, Ball AS (2016) A review on 1st and 2nd generation bioethanol production-recent progress. J Sustain Bioenergy Sys 6(3):72–92

    CrossRef  Google Scholar 

  • Mulakhudair AR, Hanotu J, Zimmerman W (2017) Exploiting ozonolysis-microbe synergy for biomass processing: application in lignocellulosic biomass pretreatment. Biomass Bioenergy 105:147–154

    CrossRef  Google Scholar 

  • Mupondwa E, Li X, Tabil L, Sokhansanj S, Adapa P (2017) Status of Canada’s lignocellulosic ethanol: part I: pretreatment technologies. Renew Sust Energ Rev 72:178–190

    CrossRef  Google Scholar 

  • Mussatto SI, Machado EMS, Carneiro LM, Teixeira JA (2012) Sugars metabolism and ethanol production by different yeast strains from coffee industry waste hydrolysates. Appl Energy 92:763–768

    CrossRef  Google Scholar 

  • Mussatto SJ, Dragone G, Guimaraes PMR, Paulo J, Silva A, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830

    CrossRef  Google Scholar 

  • Myat L, Ryu GH (2016) Pretreatments and factors affecting saccharification and fermentation for lignocellulosic ethanol production. Cellulose Chem Technol 50(2):177–188

    Google Scholar 

  • Nikolic S, Mojovic L, Pejin D, Rakin M, Vucurovic V (2009) Improvement of ethanol fermentation of corn Semolina hydrolyzates with immobilized yeast by medium supplementation. Food Technol Biotechnol 47(1):83–89

    Google Scholar 

  • Nikolic S, Pejin J, Mojovic L (2016) Challenges in bioethanol production: utilization of cotton fabrics as a feedstock. Chem Ind Chem Eng Q 22(4):375–390

    CrossRef  Google Scholar 

  • Nishimura H, Tan L, Kira N, Tomiyama S, Yamada K, Sun ZY, Tang YQ, Morimura S, Kida K (2017) Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, pre-saccharification and simultaneous saccharification and fermentation. Waste Manag 67:86–94

    CrossRef  Google Scholar 

  • Olofsson K, Wiman M, Liden G (2010) Controlled feeding of cellulose improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J Biotechnol 145(2):168–175

    CrossRef  Google Scholar 

  • Olsson L, Hagerdal BH (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18(5):312–331

    CrossRef  Google Scholar 

  • Pale MM, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245

    CrossRef  Google Scholar 

  • Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    CrossRef  Google Scholar 

  • Parambil LK, Sarkar D (2015) In silico analysis of bioethanol overproduction by genetically modified microorganisms in co-culture fermentation. Biotechnol Res Int 2015:1–11

    CrossRef  Google Scholar 

  • Park I, Kim I, Kang K, Sohn H, Rhee I, Jin I, Jang H (2010) Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377. Proc Biochem 45(4):487–492

    CrossRef  Google Scholar 

  • Perron OM, Colombari FM, Rossi JS, Moretti MMS, Bordignon SM, Nunes CC, Gomes E, Boscolo M, Silva R (2016) Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: effect of the enzyme saccharification and the physical and chemical characteristics of the substrate. Bioresour Technol 218:69–76

    CrossRef  Google Scholar 

  • Phitsuwan P, Permsriburasuk C, Baramee S, Teeravivattanakit T, Ratanakhanokchai K (2017) Structural analysis of alkali pretreated rice straw for ethanol production. Int J Polymer Sci 2017:1–9

    CrossRef  Google Scholar 

  • Pielhop T, Amgarten J, Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:1–13

    CrossRef  Google Scholar 

  • Planas OP, Ativeh HK, Phillips JR, Aichele CP, Mohammad S (2017) Process simulation of ethanol production from biomass gasification and syngas fermentation. Bioresour Technol 245:925–932

    CrossRef  Google Scholar 

  • Qin L, Zhao X, Li WC, Zhu JQ, Liu L, Li BZ, Yuan YJ (2018) Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnol Biofuels 11:1–10

    CrossRef  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101(15):5941–5951

    CrossRef  Google Scholar 

  • Rabelo SC, Filho RM, Costa AC (2009) Lime pretreatment of sugarcane bagasse for bioethanol production. Appl Biochem Biotechnol 153(1–3):139–150

    CrossRef  Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    CrossRef  Google Scholar 

  • Raud M, Olt J, Kikas T (2016) N2 explosive decompression pretreatment of biomass for lignocellulosic ethanol production. Biomass Bioenergy 90:1–6

    CrossRef  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    CrossRef  Google Scholar 

  • Sanchez O, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    CrossRef  Google Scholar 

  • Sar T, Stark BC, Akbas MY (2017) Effective ethanol production from whey powder through immobilized E.coli expressing Vitreoscilla hemoglobin. Bioeng 8(2):171–181

    Google Scholar 

  • Schmid O, Padel S, Levidow L (2012) The bio-economy concept and knowledge base in a public goods and farmer perspective. Bio-Based Appl Econ 1(1):47–63

    Google Scholar 

  • Scordia D, Testa G, Cosentino SL (2014) Perennial grasses as lignocellulosic feedstock for second-generation bioethanol production in Mediterranean environment. Ital J Agron 9(2):84–92

    CrossRef  Google Scholar 

  • Selim KA, El-Ghwas DE, Easa SM, Hassan MIA (2018) Bioethanol a microbial biofuel metabolite; new insights of yeast metabolic engineering. Ferment 4(1):1–27

    CrossRef  Google Scholar 

  • Serrano ML, Angulo FS, Negro MJ, Rosa SM, Martin JMC, Fierro JLG (2018) Second generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sustainable Chem Eng 6(5):7086–7095

    CrossRef  Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Poly Sci 23(5):1431–1442

    CrossRef  Google Scholar 

  • Sharma G (1988) Developments in bioreactors for fuel ethanol production. Proc Biochem 23:138–145

    Google Scholar 

  • Sharma S, Sharma V, Kuila A (2018) Simultaneous saccharification and fermentation of corn husk by co-culture. J Petrol Environ Biotechnol 9(1):1–5

    Google Scholar 

  • Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. J App Biol Biotech 4:30–37

    Google Scholar 

  • Sieker T, Neuner A, Dimitrova D, Tippkotter N, Muffler K, Bart HJ, Heinzle E, Ulber R (2011) Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: first steps in the process of development. Eng Life Sci 11(4):436–442

    CrossRef  Google Scholar 

  • Sierra R, Granda C, Holtzapple MT (2009) Short term lime pretreatment of poplar wood. Biotechnol Prog 25(2):323–332

    CrossRef  Google Scholar 

  • Singh A, Sharma P, Saran AK, Singh N, Bishnoi NR (2013) Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renew Energy 50:488–493

    CrossRef  Google Scholar 

  • Singh LK, Chaudhary G, Majumder CB, Ghosh S (2011) Utilization of hemicellulosic fraction of lignocellulosic biomaterial for bioethanol production. Adv Appl Sci Res 2(5):508–521

    Google Scholar 

  • Singh S (2013) Praj Industries revs up cellulosic ethanol plan. India Frobes, India. http://www.forbesindia.com/article/checkin/praj-industries-revs-up-cellulosic-ethanol-plan/35963/1. Accessed 15 July 2018

  • Sipos B, Kreuger E, Svensson S, Reczey K, Bjornsson L, Zacchi G (2010) Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass Bioenergy 34:1721–1731

    CrossRef  Google Scholar 

  • Sonego JLS, Lemos DA, Pinto CEM, Cruz AJG, Badino AC (2016) Extractive fed-batch ethanol fermentation with CO2 stripping in a bubble column bioreactor: experiment and modeling. Energy Fuels 30(1):748–757

    CrossRef  Google Scholar 

  • Sooch BS, Lugani Y (2017) Microbial Diversity: types, utility and its conservation. In: Chauhan A, Bharti PK (eds) Forest and biodiversity conservation. Envy Book Series. Discovery Publishing House Pvt. Ltd., New Delhi, India, pp 131–166

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    CrossRef  Google Scholar 

  • Swain KC (2014) Biofuel production in India: potential, prospects and technology. J Fundam Renew Energy Appl 4(1):1–4

    CrossRef  Google Scholar 

  • Swart J, Ho P, Jiang J (2008) Risk perceptions and GM crops: the case of China. Tailoring Biotechnol Soc Sci Technol 3(3):11–28

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(4):707–738

    Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    CrossRef  Google Scholar 

  • Tarrsini M, Teoh YP, Ng QH, Kunasundaril B, Oo ZX, Shuit HS, Hoo PY (2018) Practicability of lignocellulosic waste composite in controlling air pollution from leaves litter through bioethanol production. Mat Sci Eng 318:1–8

    Google Scholar 

  • Tayyab M, Noman A, Islam W, Waheed S, Arafat Y, Ali F, Zaynab M, Lin S, Zhang H, Lin W (2018) Bioethanol production from lignocellulosic biomass by environment friendly pretreatment methods: a review. Appl Ecol Environ Res 16(1):225–249

    CrossRef  Google Scholar 

  • Teymouri F, Perez LL, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):2014–2018

    CrossRef  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6(9):1–23

    Google Scholar 

  • Tutt M, Kikas T, Olt J (2012) Comparison of different pretreatment methods on degradation of rye straw. Eng Rural Develop 1:412–416

    Google Scholar 

  • Vaid S, Nargotra P, Bajaj BK (2018) Consolidated bioprocessing for biofuel-ethanol production from pine needle biomass. Environ Prog Sustain Energy 37(1):546–552

    CrossRef  Google Scholar 

  • Valenzuela R, Priebe X, Troncoso E, Ortega I, Parra C, Freer J (2016) Fiber modification by organosolv catalyzed with H2SO4 improves SSF of Pinus radiata. Ind Crops Prod 86:79–86

    CrossRef  Google Scholar 

  • Vallejos ME, Felissia FE, Area MC (2017) Hydrothermal treatments applied to agro- and forest-industrial waste to produce high added value compounds. BioResources 12(1):2058–2080

    Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siikaaho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145

    Google Scholar 

  • Walker DJ, Gallagher J, Winters A, Somani A, Ravella SR, Bryant DN (2018) Process optimization of steam explosion parameters on multiple lignocellulosic biomass using Taguchi method—a critical appraisal. Front Energy Res 6(46):1–13

    Google Scholar 

  • Wang M, Han J, Dunn JF, Cai H, Elgowainy A (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7:1–13

    Google Scholar 

  • Watanabe I, Miyata N, Ando A, Shiroma R, Tokuyasu K, Nakamura T (2012) Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. Bioresour Technol 123:695–698

    CrossRef  Google Scholar 

  • Wheals AE, Basso LC, Alves DM, Amorim HV (1999) Fuel ethanol after 25 years. Trend Biotechnol 17(12):482–487

    CrossRef  Google Scholar 

  • Wi SG, Choi IS, Kim KH, Kim HM, Bae HJ (2013) Bioethanol production from rice straw by popping pretreatment. Biotechnol Biofuels 6(1):1–7

    CrossRef  Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117

    CrossRef  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    CrossRef  Google Scholar 

  • Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20(3):364–371

    CrossRef  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    CrossRef  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    CrossRef  Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/b978-0-444-63501-3.00001-6

  • Yang B, Dai Z, Ding SY, Wyman CE (2011) Biofuels enzymatic hydrolysis of cellulosic biomass 2(4):421–450

    Google Scholar 

  • Yang X, Lee JH, Yoo HY, Shin HY, Thapa LP, Park C, Kim SW (2014) Production of bioethanol and biodiesel using instant noodle waste. Bioprocess Biosyst Eng 37(8):1627–1635

    CrossRef  Google Scholar 

  • Zaman K, Awan U, Islam T, Paidi R, Hassan A, Abdullah A (2016) Econometric applications for measuring the environmental impacts of biofuel production in the panel of world’s largest region. Int J Hydrogen Energy 41(7):4305–4325

    CrossRef  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemical: a review. Bioresour Technol 199:21–33

    CrossRef  Google Scholar 

  • Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102(19):8899–8906

    CrossRef  Google Scholar 

  • Zheng Y, Lin H, Tsao GT (1998) Pretreament for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14(6):890–896

    CrossRef  Google Scholar 

  • Zhou L, Shi M, Cai Q, Wu L, Hu X, Yang X, Chen C, Xu J (2013) Hydrolysis of hemicelluloses catalyzed by hierarchial H-USY zeolites- The role of acidity and pore structure. Microporous Mesoporous Mater 169:54–59

    CrossRef  Google Scholar 

  • Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101(19):7523–7528

    CrossRef  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Biotechnology, Punjabi University, Patiala, India, and Bhai Kahn Singh Nabha Library, Punjabi University, Patiala, India, for providing access to technical and scientific literature. The authors also acknowledge the support from Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lugani, Y., Sooch, B.S., Kumar, S. (2019). Biochemical Strategies for Enhanced Biofuel Production . In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)