Skip to main content

Technologies for Biofuel Production: Current Development, Challenges, and Future Prospects

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

The global energy demand is increasing day by day, with which substantial risk to the environment is also increasing. The consumption of the fuel, as well as the demand, is expected to grow rapidly side by side, and use of fossil energy is causing harmful impacts on the environment. All these factors have greatly attracted the attention of the researchers to find some alternative renewable resources of energy. Biofuels are an outstanding instance of renewable energy which can be produced using biological organisms which will ultimately cause a reduction in dependence on fossil fuels. Thus, biofuels are an attractive and feasible source of renewable energy on contrary to the geopolitical instability, finite nature, and deleterious global effects of fossil fuel energy. Biofuels are basically the energy-enriched chemicals that are generated either directly through the biological processes or from the chemical conversion of the biomass of prior living organisms. Biofuels are chiefly produced by photosynthetic organisms, including photosynthetic bacteria, micro- and macroalgae, and vascular land plants. Among all these organisms utilized, microalgae are being considered to be the most attractive source for production of biofuels. The biofuels production is still challenging at commercial scale, and new strains with commercial potential are still needed to be explored more. The combination of multiple genetic engineering strategies for optimizing the biofuels production will surely be useful. Thus, to overcome the energy crisis, the global cooperative efforts are very important for transforming biofuels into our current energy system that will further aid in cultivation methodology development as well as technology advancement of biofuels production.

Keywords

  • Biodiesel
  • Biofuel
  • Bioresources
  • Microbial technologies
  • Renewable energy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_1
  • Chapter length: 50 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1.1

Adapted with permission from Azad et al. (2015)

Fig. 1.2

Adapted with permission from Dutta et al. (2014)

Fig. 1.3
Fig. 1.4

Adapted with permission from Schubert (2006)

Fig. 1.5
Fig. 1.6
Fig. 1.7

Adapted from Welker et al. (2015)

Fig. 1.8

Adapted with permission from Huber et al. (2006)

Fig. 1.9
Fig. 1.10

Adapted with permission from Koutra et al. (2018)

References

  • Abrini J, Naveau H, Nyns E-J (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351

    CrossRef  Google Scholar 

  • Afify AE-MM, Shalaby EA, Shanab SM (2010) Enhancement of biodiesel production from different species of algae. Grasas Aceites 61:416–422

    CrossRef  Google Scholar 

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    CrossRef  Google Scholar 

  • Akoh CC, Chang SW, Lee GC, Shaw JF (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005

    CrossRef  Google Scholar 

  • Almodares A, Hadi M (2009) Production of bioethanol from sweet sorghum: a review. Afr J Agric Res 4:772–780

    Google Scholar 

  • Almodares A, Sepahi A (1996) Comparison among sweet sorghum cultivars, lines and hybrids for sugar production. Ann Plant Physiol 10:50–55

    Google Scholar 

  • Almodares A, Sepahi A, Dalilitajary H, Gavami R (1994) Effect of phenological stages on biomass and carbohydrate contents of sweet sorghum cultivars. Ann Plant Physiol 8:42–48

    Google Scholar 

  • Almodares A, Hadi M, Dosti B (2007) Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci 7:1492–1495

    CrossRef  Google Scholar 

  • Almodares A, Hadi M, Ahmadpour H (2008) Sorghum stem yield and soluble carbohydrates under different salinity levels. Afr J Biotechnol 7:4051–4055

    Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    CrossRef  Google Scholar 

  • Anam K, Habibi MS, Harwati TU, Susilaningsih D (2012) Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater. Int J Hydrog Energy 37:15436–15442

    CrossRef  Google Scholar 

  • Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74:6102–6113

    CrossRef  Google Scholar 

  • Anitha M, Kamarudin SK, Shamsul N, Kofli NT (2015) Determination of bio-methanol as intermediate product of anaerobic co-digestion in animal and agriculture wastes. Int J Hydrog Energy 40:11791–11799

    CrossRef  Google Scholar 

  • Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferment Bioeng 83:17–20

    CrossRef  Google Scholar 

  • Arteaga-Pérez LE, Gómez-Cápiro O, Karelovic A, Jiménez R (2016) A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: standalone versus integrated topologies. Chem Eng J 286:663–678

    CrossRef  Google Scholar 

  • Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177

    CrossRef  Google Scholar 

  • Azad AK, Rasul M, Khan MMK, Sharma SC, Hazrat M (2015) Prospect of biofuels as an alternative transport fuel in Australia. Renew Sust Energy Rev 43:331–351

    CrossRef  Google Scholar 

  • Bahadar A, Khan MB (2013) Progress in energy from microalgae: a review. Renew Sust Energy Rev 27:128–148

    CrossRef  Google Scholar 

  • Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104:471–482

    CrossRef  Google Scholar 

  • Balat M (2011) Potential alternatives to edible oils for biodiesel production–a review of current work. Energy Conv Manag 52:1479–1492

    CrossRef  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Bbiotechnol 22:245–279

    CrossRef  Google Scholar 

  • Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey R (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuel Bioprod Biorefin 4:77–93

    CrossRef  Google Scholar 

  • Bansal P (2005) Evolving sustainably: a longitudinal study of corporate sustainable development. Strat Manag J 26:197–218

    CrossRef  Google Scholar 

  • Bansal SK, Sreekrishnan T, Singh R (2013) Effect of heat pretreated consortia on fermentative biohydrogen production from vegetable waste. Nat Acad Sci Lett 36:125–131

    CrossRef  Google Scholar 

  • Barbosa MJ, Rocha JM, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33

    CrossRef  Google Scholar 

  • Beale C, Long S (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650

    CrossRef  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology, vol 10. Cambridge University Press

    Google Scholar 

  • Behera SS, Ray RC (2019) Forest bioresources for bioethanol and biodiesel production with emphasis on mohua (Madhuca latifolia L.) flowers and seeds. In: Ray RC, Ramachandran S (eds) Bioethanol production from food crops. Academic Press, United Kingdom, pp 233–247. https://doi.org/10.1016/B978-0-12-813766-6.00012-6

  • Bellido C, Pinto ML, Coca M, González-Benito G, García-Cubero MT (2014) Acetone–butanol–ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates. Bioresour Technol 167:198–205

    CrossRef  Google Scholar 

  • Berndes G, Hoogwijk M, Van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28

    CrossRef  Google Scholar 

  • Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuel 8:210

    CrossRef  Google Scholar 

  • Bhardwaj AK, Zenone T, Chen J (2015) Sustainable biofuels: an ecological assessment of the future energy. Walter de Gruyter GmbH & Co KG

    Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774. https://doi.org/10.1016/j.biortech.2009.10.079

    CrossRef  Google Scholar 

  • Biswas S, Kundu D, Mazumdar S, Saha A, Majumdar B, Ghorai A, Ghosh D, Yadav A, Saxena A (2018) Study on the activity and diversity of bacteria in a new gangetic alluvial soil (Eutrocrept) under rice-wheat-jute cropping system. J Environ Biol 39:379–386

    CrossRef  Google Scholar 

  • Boateng A, Hicks K, Vogel KP (2006) Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity. J Anal Appl Pyroly 75:55–64

    CrossRef  Google Scholar 

  • Boran E, Özgür E, van der Burg J, Yücel M, Gündüz U, Eroglu I (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35

    CrossRef  Google Scholar 

  • Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sust Energy Rev 16:4763–4784

    CrossRef  Google Scholar 

  • Braide W, Kanu I, Oranusi U, Adeleye S (2016) Production of bioethanol from agricultural waste. J Fund Appl Sci 8:372–386

    CrossRef  Google Scholar 

  • Cai Y, Lai C, Li S, Liang Z, Zhu M, Liang S, Wang J (2011) Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense. Enzy Microb Technol 48:155–161

    CrossRef  Google Scholar 

  • Cao GL, Zhao L, Wang AJ, Wang ZY, Ren NQ (2014) Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol Biofuel 7:82

    CrossRef  Google Scholar 

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    CrossRef  Google Scholar 

  • Carvalho Júnior RM, Vargas JV, Ramos LP, Marino CE, Torres JC (2011) Microalgae biodiesel via in situ methanolysis. J Chem Technol Biotechnol 86:1418–1427

    CrossRef  Google Scholar 

  • Casler MD (2012) Switchgrass breeding, genetics, and genomics. Switchgrass. Springer, London, pp 29–53

    CrossRef  Google Scholar 

  • Casson A, Muliastra YIKD, Obidzinski K (2014) Large-scale plantations, bioenergy developments and land use change in Indonesia vol 170. CIFOR

    Google Scholar 

  • Chandra R, Vijay V, Subbarao P, Khura T (2011) Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas. Appl Energy 88:3969–3977

    CrossRef  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy 94:129–140

    CrossRef  Google Scholar 

  • Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057

    CrossRef  Google Scholar 

  • Chen GQ, Jiang Y, Chen F (2008) Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem 109:88–94

    CrossRef  Google Scholar 

  • Cheng J, Zhu M (2013) A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresour Technol 144:623–631

    CrossRef  Google Scholar 

  • Cheng CL, Che PY, Chen BY, Lee WJ, Lin CY, Chang JS (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9

    CrossRef  Google Scholar 

  • Cheng J, Yu Y, Zhu M (2014) Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition. Green Chem 16:2689–2695

    CrossRef  Google Scholar 

  • Chidrewar G, Tanavade J, Deshpande S, Vartak P, Shah J, Patel N, Patadiya C, Bafna P (2010) Anti-ulcer and antioxidant activity of leaves of Madhuca indica in rats. Orient Pharm Exp Med 10:13–20

    CrossRef  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336

    CrossRef  Google Scholar 

  • Cripps R, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408

    CrossRef  Google Scholar 

  • Crowe B, Attalah S, Agrawal S, Waller P, Ryan R, Van Wagenen J, Chavis A, Kyndt J, Kacira M, Ogden KL (2012) A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management. Int J Chem Eng. http://dx.doi.org/10.1155/2012/920608

  • Daniel SL, Hsu T, Dean S, Drake H (1990) Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471

    CrossRef  Google Scholar 

  • Dar RA, Dar EA, Kaur A, Phutela UG (2018) Sweet sorghum-a promising alternative feedstock for biofuel production. Renew Sust Energy Rev 82:4070–4090

    CrossRef  Google Scholar 

  • Dash M, Venkata Dasu V, Mohanty K (2015) Physico-chemical characterization of Miscanthus, Castor, and Jatropha towards biofuel production. J Renew Sust Energ 7:043124

    CrossRef  Google Scholar 

  • David K, Ragauskas AJ (2010) Switchgrass as an energy crop for biofuel production: a review of its ligno-cellulosic chemical properties. Energy Environ Sci 3:1182–1190

    CrossRef  Google Scholar 

  • De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672

    CrossRef  Google Scholar 

  • De Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuel 2:12

    CrossRef  Google Scholar 

  • Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Comb Sci 31:171–192

    CrossRef  Google Scholar 

  • Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117

    CrossRef  Google Scholar 

  • Demirbas A (2010) Social, economic, environmental and policy aspects of biofuels. Energy Edu Sci Technol Part B-Soc Edu Study 2:75–109

    Google Scholar 

  • Demirbas A, Bafail A, Ahmad W, Sheikh M (2016) Biodiesel production from non-edible plant oils. Energy Explor Exploit 34:290–318

    CrossRef  Google Scholar 

  • Deshmukh S, Jinturkar A, Gawande J (2008) Comparative experimental study of single basin and stepped type solar stil. Energy Edu Sci Technol 20:79

    Google Scholar 

  • Divakara B, Upadhyaya H, Wani S, Gowda CL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742

    CrossRef  Google Scholar 

  • Doshi P, Srivastava G (2013) Sustainable approach to produce bioethanol from Karanja (Pongamia pinnata) oilseed residue. Turk J Agric For 37:781–788

    CrossRef  Google Scholar 

  • Dragone G, Fernandes BD, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. Curr Res Technol Edu Top Appl Microbiol Microb Biotechnol 2:1355–1366

    Google Scholar 

  • Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trend Biotechnol 29:95–103

    CrossRef  Google Scholar 

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    CrossRef  Google Scholar 

  • Einloft S, Magalhães TO, Donato A, Dullius J, Ligabue R (2007) Biodiesel from rice bran oil: transesterification by tin compounds. Energy Fuels 22:671–674

    CrossRef  Google Scholar 

  • Endalew AK, Kiros Y, Zanzi R (2011) Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy 36:2693–2700

    CrossRef  Google Scholar 

  • Ewan B, Allen R (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30:809–819

    CrossRef  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    CrossRef  Google Scholar 

  • Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580

    CrossRef  Google Scholar 

  • Falkowski P, Raven J (1997) Photosynthesis in continuous light. Aquatic Photosynthesis Blackwell Science, Malden, Massachusetts, pp 193–227

    Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor F (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    CrossRef  Google Scholar 

  • Farage PK, Blowers D, Long SP, Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus giganteus. Plant, Cell Environ 29:720–728

    CrossRef  Google Scholar 

  • Fei Q, Chang HN, Shang L, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102:2695–2701

    CrossRef  Google Scholar 

  • Fu R, Fei Q, Shang L, Brigham CJ, Chang HN (2018) Enhanced microbial lipid production by Cryptococcus albidus in the high-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. J Ind Microbiol Biotechnol 45:1045–1051

    CrossRef  Google Scholar 

  • Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5:1–2

    CrossRef  Google Scholar 

  • Ganuza E, Benítez-Santana T, Atalah E, Vega-Orellana O, Ganga R, Izquierdo M (2008) Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture 277:109–116

    CrossRef  Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    CrossRef  Google Scholar 

  • Genthner BS, Bryant M (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74

    Google Scholar 

  • Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77:61–68

    CrossRef  Google Scholar 

  • Ghadge SV, Raheman H (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 28:601–605

    CrossRef  Google Scholar 

  • Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 17:489–495

    CrossRef  Google Scholar 

  • Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manag 45:32–41

    CrossRef  Google Scholar 

  • Gnansounou E, Dauriat A, Wyman C (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002

    CrossRef  Google Scholar 

  • Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486

    CrossRef  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    CrossRef  Google Scholar 

  • Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22:337–343

    CrossRef  Google Scholar 

  • Han Y, Yu C, Liu H (2010) A microbial fuel cell as power supply for implantable medical devices. Biosens Bioelect 25:2156–2160

    CrossRef  Google Scholar 

  • Harnisch F, Schröder U (2009) Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. Chem Sus Chem 2:921–926

    CrossRef  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    Google Scholar 

  • Harun R, Jason W, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467

    CrossRef  Google Scholar 

  • Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Eur J Appl Microbiol Biotechnol 18:350–357

    CrossRef  Google Scholar 

  • Hayashida S, Ohta K, Flor PQ, Nanri N, Miyahara I (1982) High concentration-ethanol fermentation of raw ground corn. Agric Biol Chem 46:1947–1950

    Google Scholar 

  • He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267

    CrossRef  Google Scholar 

  • He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40:5212–5217

    CrossRef  Google Scholar 

  • Heimann K (2016) Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production. Curr Opin Biotechnol 38:183–189

    CrossRef  Google Scholar 

  • Hijosa-Valsero M, Paniagua-García AI, Díez-Antolínez R (2017) Biobutanol production from apple pomace: the importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Appl Microbiol Biotechnol 101:8041–8052

    CrossRef  Google Scholar 

  • Hirokawa Y, Suzuki I, Hanai T (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J Biosci Bioeng 119:585–590

    CrossRef  Google Scholar 

  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198. https://doi.org/10.1016/j.biortech.2012.10.015

    CrossRef  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    CrossRef  Google Scholar 

  • Huzir NM, Aziz MMA, Ismail S, Abdullah B, Mahmood NAN, Umor N, Muhammad SAFaS (2018) Agro-industrial waste to biobutanol production: eco-friendly biofuels for next generation. Renew Sust Energy Rev 94:476–485

    Google Scholar 

  • Ike A, Murakawa T, Kawaguchi H, Hirata K, Miyamoto K (1999) Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J Biosci Bioeng 88:72–77. https://doi.org/10.1016/S1389-1723(99)80179-0

    CrossRef  Google Scholar 

  • Jain S, Sharma M (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sust Energy Rev 14:763–771

    CrossRef  Google Scholar 

  • Jeennor S, Laoteng K, Tanticharoen M, Cheevadhanarak S (2006) Comparative fatty acid profiling of Mucor rouxii under different stress conditions. FEMS Microbiol Lett 259:60–66

    CrossRef  Google Scholar 

  • Jeffries T, Timourian H, Ward R (1978) Hydrogen production by Anabaena cylindrica: effects of varying ammonium and ferric ions, pH, and light. Appl Environ Microbiol 35:704–710

    Google Scholar 

  • Jiang Y, Chen F, Liang S-Z (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Proc Biochem 34:633–637

    CrossRef  Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    CrossRef  Google Scholar 

  • Jones M, Walsh M (2013) Miscanthus: for energy and fibre. Routledge

    Google Scholar 

  • Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sust 3:24–30

    CrossRef  Google Scholar 

  • Joshi G, Pandey JK, Rana S, Rawat DS (2017) Challenges and opportunities for the application of biofuel. Renew Sust Energy Rev 79:850–866

    CrossRef  Google Scholar 

  • Jung GY, Jung HO, Kim JR, Ahn Y, Park S (1999) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol Lett 21:525–529

    CrossRef  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    CrossRef  Google Scholar 

  • Kamel DA, Farag HA, Amin NK, Zatout AA, Ali RM (2018) Smart utilization of Jatropha (Jatropha curcas L) seeds for biodiesel production: optimization and mechanism. Ind Crop Prod 111:407–413

    CrossRef  Google Scholar 

  • Kant P, Wu S, Chaliha S, Jasrotia R (2011) Going beyond Jatropha: can an expanded land and feedstock base help India meet its ambitious biodiesel target. Institute of Green Economy, New Delhi, IGREC Working Paper IGREC-22

    Google Scholar 

  • Kapilan N, Reddy R (2008) Evaluation of methyl esters of mahua oil (Madhuca indica) as diesel fuel. J Am Oil Chem Soc 85:185–188

    CrossRef  Google Scholar 

  • Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass. In: Davison BH, Lee JW, Finkelstein M, McMillan JD (eds) Biotechnology for fuels and chemicals: the twenty-fourth symposium. Humana Press, Totowa, NJ, pp 27–41. https://doi.org/10.1007/978-1-4612-0057-4_3

  • Kerby R, Ludden P, Roberts G (1995) Carbon monoxide-dependent growth of Rhodospirillum rubrum. J Bacteriol 177:2241–2244

    CrossRef  Google Scholar 

  • Khan M, Nizami A, Rehan M, Ouda O, Sultana S, Ismail I, Shahzad K (2017) Microbial electrolysis cells for hydrogen production and urban wastewater treatment: a case study of Saudi Arabia. Appl Energy 185:410–420

    CrossRef  Google Scholar 

  • Khayoon M, Olutoye M, Hameed B (2012) Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters. Bioresour Technol 111:175–179

    CrossRef  Google Scholar 

  • Khedkar MA, Nimbalkar PR, Chavan PV, Chendake YJ, Bankar SB (2017a) Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development. Bioproc Biosyst Eng 40:1493–1506

    CrossRef  Google Scholar 

  • Khedkar MA, Nimbalkar PR, Gaikwad SG, Chavan PV, Bankar SB (2017b) Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: drying kinetics study. Bioresour Technol 225:359–366

    CrossRef  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375. https://doi.org/10.1016/j.biombioe.2003.08.002

    CrossRef  Google Scholar 

  • Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38:803–807

    CrossRef  Google Scholar 

  • Kim DH, Kim MS (2013) Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresour Technol 127:267–274. https://doi.org/10.1016/j.biortech.2012.09.088

    CrossRef  Google Scholar 

  • Kim D, Cho SY, Maeng SH, Yi ES, Jung YJ, Park SW, Sohn YB, Jin DK (2012a) Diagnosis and constitutional and laboratory features of Korean girls referred for precocious puberty. Kor J Ped 55:481–486

    CrossRef  Google Scholar 

  • Kim JK, Um B-H, Kim TH (2012b) Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Kor J Chem Eng 29:209–214

    CrossRef  Google Scholar 

  • Kim D-H, Cha J, Kang S, Kim MS (2013) Continuous photo-fermentative hydrogen production from lactate and lactate-rich acidified food waste. Int J Hydrog Energy 38:6161–6166. https://doi.org/10.1016/j.ijhydene.2012.12.072

    CrossRef  Google Scholar 

  • Kirk TK, Moore WE (2007) Removing lignin from wood with white-rot fungi and digestibility of resulting wood. Wood Fiber Sci 4:72–79

    Google Scholar 

  • Klanchui A, Raethong N, Prommeenate P, Vongsangnak W, Meechai A (2016) Cyanobacterial biofuels: strategies and developments on network and modeling. In: Network Biology. Springer, pp 75–102

    Google Scholar 

  • Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sust Energy Rev 28:900–916

    CrossRef  Google Scholar 

  • Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biol Cons 141:2450–2460

    CrossRef  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9

    CrossRef  Google Scholar 

  • Koutra E, Economou CN, Tsafrakidou P, Kornaros M (2018) Bio-based products from microalgae cultivated in digestates. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.02.015

  • Krumholz L, Bryant M (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Syst Evol Microbiol 35:454–456

    Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    CrossRef  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Van Langenhove H (2010a) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trend Biotechnol 28:371–380

    CrossRef  Google Scholar 

  • Kumar A, Kumar K, Kaushik N, Sharma S, Mishra S (2010b) Renewable energy in India: current status and future potentials. Renew Sust Energy Rev 14:2434–2442

    CrossRef  Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev 1:1–9

    Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energy Rev 90:877–891

    CrossRef  Google Scholar 

  • Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363

    CrossRef  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications

    Google Scholar 

  • Lee CM, Hung GJ, Yang CF (2011a) Hydrogen production by Rhodopseudomonas palustris WP 3-5 in a serial photobioreactor fed with hydrogen fermentation effluent. Bioresour Technol 102:8350–8356. https://doi.org/10.1016/j.biortech.2011.04.072

    CrossRef  Google Scholar 

  • Lee S, Oh Y, Kim D, Kwon D, Lee C, Lee J (2011b) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl Biochem Biotechnol 164:878–888

    CrossRef  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    CrossRef  Google Scholar 

  • Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. BioMed Res Int http://dx.doi.org/10.1155/2011/141207

  • Lin L, Ying D, Chaitep S, Vittayapadung S (2009) Biodiesel production from crude rice bran oil and properties as fuel. Appl Energy 86:681–688

    CrossRef  Google Scholar 

  • Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091

    CrossRef  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    CrossRef  Google Scholar 

  • Liu BF, Ren NQ, Ding J, Xie GJ, Cao GL (2009) Enhanced photo-H2 production of R. faecalis RLD-53 by separation of CO2 from reaction system. Bioresour Technol 100:1501–1504

    CrossRef  Google Scholar 

  • Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495–501

    CrossRef  Google Scholar 

  • Logan B (2004) Biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ Sci Technol 38:160–167

    CrossRef  Google Scholar 

  • Lopez-Hidalgo AM, Sánchez A, De León-Rodríguez A (2017) Simultaneous production of bioethanol and biohydrogen by Escherichia coli WDHL using wheat straw hydrolysate as substrate. Fuel 188:19–27

    CrossRef  Google Scholar 

  • Lopez-Hidalgo AM, Alvarado-Cuevas ZD, De Leon-Rodriguez A (2018) Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up. Energy 159:32–41. https://doi.org/10.1016/j.energy.2018.06.124

    CrossRef  Google Scholar 

  • Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964

    Google Scholar 

  • Lu C, Zhao J, Yang ST, Wei D (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380–387

    CrossRef  Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466

    CrossRef  Google Scholar 

  • Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919

    CrossRef  Google Scholar 

  • Lunin V, Sergeeva YE, Galanina L, Mysyakina I, Ivashechkin A, Bogdan V, Feofilova E (2013) Biodiesel fuel production from lipids of filamentous fungi. Appl Biochem Microbiol 49:46–52

    CrossRef  Google Scholar 

  • Lynd L, Weimer P, van Zyl W, Pretorius I (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CrossRef  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    CrossRef  Google Scholar 

  • Ma C, Wang X, Guo L, Wu X, Yang H (2012) Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation. Bioresour Technol 118:490–495. https://doi.org/10.1016/j.biortech.2012.04.105

    CrossRef  Google Scholar 

  • Maceiras R, Rodrı M, Cancela A, Urréjola S, Sánchez A (2011) Macroalgae: raw material for biodiesel production. Appl Energy 88:3318–3323

    CrossRef  Google Scholar 

  • Makkar HP, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111:773–787

    CrossRef  Google Scholar 

  • Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6:3937–3950

    CrossRef  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    CrossRef  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    CrossRef  Google Scholar 

  • McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76:5032–5038

    CrossRef  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34:1–5. https://doi.org/10.1016/j.renene.2008.04.014

    CrossRef  Google Scholar 

  • Mes-Hartree M, Yu E, Reid I, Saddler J (1987) Suitability of aspenwood biologically delignified with Pheblia tremellosus for fermentation to ethanol or butanediol. Appl Microbiol Biotechnol 26:120–125

    CrossRef  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    CrossRef  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    CrossRef  Google Scholar 

  • Min H, Sherman LA (2010) Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76:4293–4301

    CrossRef  Google Scholar 

  • Mohanty SK (2013) A Production of biodiesel from rice bran oil and experimenting on small capacity diesel engine. Int J Mod Eng Res 3:920–923

    Google Scholar 

  • Moreira JR (2006) Global biomass energy potential. Mitig Adapt Strat Glob Change 11:313–342

    CrossRef  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    CrossRef  Google Scholar 

  • Naik P, Katpatal D (2013) Optimization of effective parameters of Pongamia pinnata (Karanja) biodiesel using Taguchi method. Int J Eng Res Appl 3:701–706

    Google Scholar 

  • Nakagawa H, Harada T, Ichinose T, Takeno K, Matsumoto S, Kobayashi M, Sakai M (2007) Biomethanol production and CO2 emission reduction from forage grasses, trees, and crop residues. Jpn Agric Res 41:173–180

    CrossRef  Google Scholar 

  • Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19:161–166

    CrossRef  Google Scholar 

  • Olivieri G, Marzocchella A, Andreozzi R, Pinto G, Pollio A (2011) Biodiesel production from Stichococcus strains at laboratory scale. J Chem Technol Biotechnol 86:776–783

    CrossRef  Google Scholar 

  • Olson SN, Ritter K, Rooney W, Kemanian A, McCarl BA, Zhang Y, Hall S, Packer D, Mullet J (2012) High biomass yield energy sorghum: developing a genetic model for C4 grass bioenergy crops. Biofuel Bioprod Bioref 6:640–655

    CrossRef  Google Scholar 

  • Ou MS, Mohammed N, Ingram L, Shanmugam K (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155:76–82

    CrossRef  Google Scholar 

  • Palomo-Briones R, Razo-Flores E, Bernet N, Trably E (2017) Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: novel insights on their control. Appl Energy 198:77–87

    CrossRef  Google Scholar 

  • Pampulha ME, Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184:69–72

    CrossRef  Google Scholar 

  • Pandey A (2008) Handbook of plant-based biofuels. CRC press,

    Google Scholar 

  • Pandey RK, Tewari L (2018) Mycotechnology for lignocellulosic bioethanol production: an emerging approach to sustainable environment. In: Microbial biotechnology in environmental monitoring and cleanup. IGI Global, pp 28–43

    Google Scholar 

  • Panigrahi N, Mohanty MK, Mishra SR, Mohanty RC (2014) Performance, emission, energy, and exergy analysis of a C.I. engine using mahua biodiesel blends with diesel. International Scholarly Research Notices 2014:1–13

    Google Scholar 

  • Parawira W (2010) Biodiesel production from Jatropha curcas: A review. Scientific Research and Essays 5(14):1796–1808

    Google Scholar 

  • Parfitt J (2010) Food waste within food supply chains: quantification and potential for change to 2050, 27 Phil. Trans Royal Soc Brit 3065:3077

    Google Scholar 

  • Park M-O (2005) New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J Bacteriol 187:1426–1429

    CrossRef  Google Scholar 

  • Parkash A (2016) Microbial fuel cells: a source of bioenergy. J Microb Biochem Technol 8:247–255

    CrossRef  Google Scholar 

  • Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459. https://doi.org/10.1080/07352680500316433

    CrossRef  Google Scholar 

  • Parshina S, Kijlstra S, Henstra A, Sipma J, Plugge C, Stams A (2005a) Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol 68:390–396

    CrossRef  Google Scholar 

  • Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PN, Lettinga G, Stams AJ (2005b) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165

    CrossRef  Google Scholar 

  • Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87:3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008

    CrossRef  Google Scholar 

  • Prasad S, Singh A, Jain N, Joshi H (2007a) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel 21:2415–2420

    CrossRef  Google Scholar 

  • Prasad S, Singh A, Joshi H (2007b) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Cons Recy 50:1–39

    CrossRef  Google Scholar 

  • Procentese A, Raganati F, Olivieri G, Russo ME, Marzocchella A (2017) Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass Bioenergy 96:172–179

    CrossRef  Google Scholar 

  • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I-use of barley straw hydrolysate. Biomass Bioenergy 34:559–565

    CrossRef  Google Scholar 

  • Rahman S, Masdar M, Rosli M, Majlan E, Husaini T (2015) Overview of biohydrogen production technologies and application in fuel cell. Am J Chem 5:13–23

    Google Scholar 

  • Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenergy 23:487–493

    CrossRef  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 1: Diversity and enzymes perspectives. Springer International Publishing, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

  • Rao AR, Dayananda C, Sarada R, Shamala T, Ravishankar G (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    CrossRef  Google Scholar 

  • Rashid U, Anwar F, Jamil A, Bhatti HN (2010) Jatropha curcas seed oil as a viable source for biodiesel. Pak J Bot 42:575–582

    Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514

    CrossRef  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energy Rev 27:622–653

    CrossRef  Google Scholar 

  • Reddy CA, D’Souza TM (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13:137–152

    CrossRef  Google Scholar 

  • Reddy BV, Ramesh S, Reddy PS, Ramaiah B, Salimath M, Kachapur R (2005) Sweet sorghum-a potential alternate raw material for bio-ethanol and bio-energy. Int Sorghum Millets News 46:79–86

    Google Scholar 

  • Reddy A, Saleh A, Islam M, Hamdan S (2017) Active razor shell CaO catalyst synthesis for Jatropha methyl ester production via optimized two-step transesterification. J Chem https://doi.org/10.1155/2017/1489218

  • Ren NQ, Liu BF, Zheng GX, Xing DF, Zhao X, Guo WQ, Ding J (2009) Strategy for enhancing photo-hydrogen production yield by repeated fed-batch cultures. Int J Hydrog Energy 34:7579–7584. https://doi.org/10.1016/j.ijhydene.2009.07.030

    CrossRef  Google Scholar 

  • Rodionova M, Poudyal R, Tiwari I, Voloshin R, Zharmukhamedov S, Nam H, Zayadan B, Bruce B, Hou H, Allakhverdiev S (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42:8450–8461

    CrossRef  Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuel Bioprod Bioref 1:147–157

    CrossRef  Google Scholar 

  • Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205

    CrossRef  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Google Scholar 

  • Sanderson M, Reed R, McLaughlin S, Wullschleger S, Conger B, Parrish D, Wolf D, Taliaferro C, Hopkins A, Ocumpaugh W (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56:83–93

    CrossRef  Google Scholar 

  • Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86:1315–1325

    CrossRef  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    CrossRef  Google Scholar 

  • Savage MD, Wu Z, Daniel SL, Lundie LL, Drake HL (1987) Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol 53:1902–1906

    Google Scholar 

  • Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T (1995) Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol Bioeng 48:719–724

    CrossRef  Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    CrossRef  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    CrossRef  Google Scholar 

  • Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777

    CrossRef  Google Scholar 

  • Scott PT, Pregelj L, Chen N, Hadler JS, Djordjevic MA, Gresshoff PM (2008) Pongamia pinnata: an untapped resource for the biofuels industry of the future. Bioenergy Res 1:2–11

    CrossRef  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    CrossRef  Google Scholar 

  • Seifert K, Waligorska M, Laniecki M (2010) Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 35:4085–4091. https://doi.org/10.1016/j.ijhydene.2010.01.126

    CrossRef  Google Scholar 

  • Sekoai P, Kana EG (2013) A two-stage modelling and optimization of biohydrogen production from a mixture of agro-municipal waste. Int J Hydrog Energy 38:8657–8663

    CrossRef  Google Scholar 

  • Sen B, Chou YP, Wu SY, Liu CM (2016) Pretreatment conditions of rice straw for simultaneous hydrogen and ethanol fermentation by mixed culture. Int J Hydrog Energy 41:4421–4428

    CrossRef  Google Scholar 

  • Sergeeva YE, Galanina L, Andrianova D, Feofilova E (2008) Lipids of filamentous fungi as a material for producing biodiesel fuel. Appl Biochem Microbiol 44:523–527

    CrossRef  Google Scholar 

  • Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189

    CrossRef  Google Scholar 

  • Shamsul N, Kamarudin SK, Rahman NA, Kofli NT (2014) An overview on the production of bio-methanol as potential renewable energy. Renew Sust Energy Rev 33:578–588

    CrossRef  Google Scholar 

  • Sharma Y, Singh B, Upadhyay S (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373

    CrossRef  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Nat Acad Sci 105(37):13769–13774. https://doi.org/10.1073/pnas.0801266105

  • Sheikh MMI, Kim CH, Park HH, Nam HG, Lee GS, Jo HS, Lee JY, Kim JW (2015) A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production. J Sci Food Agric 95:843–850

    CrossRef  Google Scholar 

  • Sheldon RA (2018) Enzymatic conversion of first-and second-generation sugars. In: biomass and green chemistry. Springer, pp 169–189

    Google Scholar 

  • Shen G-J, Shieh J-S, Grethlein A, Jain M, Zeikus J (1999) Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum. Appl Microbiol Biotechnol 51:827–832

    CrossRef  Google Scholar 

  • Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    CrossRef  Google Scholar 

  • Show KY, Lee DJ, Zhang ZP (2011) Production of biohydrogen: current perspectives and future prospects. In: Biofuels. Elsevier, pp 467–479

    Google Scholar 

  • Shrestha P, Rasmussen M, Khanal SK, Pometto Iii AL, van Leeuwen J (2008) Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agric Food Chem 56:3918–3924

    CrossRef  Google Scholar 

  • Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    CrossRef  Google Scholar 

  • Sims RE (2004) Biomass, bioenergy and biomaterials: future prospects. Biomass and agriculture–sustainability markets and policies OECD, Paris, 37–61

    Google Scholar 

  • Sims RE, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12:2054–2076

    CrossRef  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami A-S, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    CrossRef  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

    CrossRef  Google Scholar 

  • Sinha S, Agarwal AK, Garg S (2008) Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conv Manag 49:1248–1257

    CrossRef  Google Scholar 

  • Sivamani S, Chandrasekaran AP, Balajii M, Shanmugaprakash M, Hosseini-Bandegharaei A, Baskar R (2018) Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Bio/Technol 17:553–570

    CrossRef  Google Scholar 

  • Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA (2006) Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 56:797–800

    CrossRef  Google Scholar 

  • Sokolova T, Gonzalez J, Kostrikina N, Chernyh N, Tourova T, Kato C, Bonch-Osmolovskaya E, Robb F (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149

    CrossRef  Google Scholar 

  • Sokolova T, Kostrikina N, Chernyh N, Tourova T, Kolganova T, Bonch-Osmolovskaya E (2002) Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967

    Google Scholar 

  • Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359

    CrossRef  Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int J Syst Evol Microbiol 55:2069–2073

    CrossRef  Google Scholar 

  • Sokolova T, Hanel J, Onyenwoke R, Reysenbach A-L, Banta A, Geyer R, González J, Whitman WB, Wiegel J (2007) Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 11:145–157

    CrossRef  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    CrossRef  Google Scholar 

  • Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh B (2003) Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Proc Biochem 38:1719–1724

    CrossRef  Google Scholar 

  • Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sust Energy Rev 4:111–133

    CrossRef  Google Scholar 

  • Stewart JR, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Gcb Bioenergy 1:126–153

    CrossRef  Google Scholar 

  • Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328

    CrossRef  Google Scholar 

  • Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou J-S, Syu R-J (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908

    CrossRef  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

  • Suntana AS, Vogt KA, Turnblom EC, Upadhye R (2009) Bio-methanol potential in Indonesia: forest biomass as a source of bio-energy that reduces carbon emissions. Appl Energy 86:S215–S221

    CrossRef  Google Scholar 

  • Surriya O, Saleem SS, Waqar K, Kazi AG, Öztürk M (2015) Bio-fuels: a blessing in disguise. In: Phytoremediation for green energy. Springer, pp 11–54

    Google Scholar 

  • Svetlichnyi V, Sokolova T, Kostrikina N, Lysenko A (1994) Carboxydothermus restrictus sp. nov—a new thermophilic anaerobic carboxydotrophic bacterium. Mikrobiologiya 63:523–528

    Google Scholar 

  • Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing Eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144

    CrossRef  Google Scholar 

  • Taha EM, Omar O, Yusoff WMW, Hamid AA (2010) Lipid biosynthesis in Cunninghamella bainieri 2A1 in N-limited and N-excess media. Ann Microbiol 60:615–622

    CrossRef  Google Scholar 

  • Tanaka K, Tamamushi R, Ogawa T (1985) Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J Chem Technol Biotechnol Biotechnol 35:191–197

    CrossRef  Google Scholar 

  • Tang H, Abunasser N, Garcia M, Chen M, Ng KS, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88:3324–3330

    CrossRef  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643

    CrossRef  Google Scholar 

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Evol Microbiol 43:232–236

    Google Scholar 

  • Tao Y, He Y, Wu Y, Liu F, Li X, Zong W, Zhou Z (2008) Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrog Energy 33:963–973. https://doi.org/10.1016/j.ijhydene.2007.11.021

    CrossRef  Google Scholar 

  • Tapanes NCO, Aranda DAG, de Mesquita Carneiro JW, Antunes OAC (2008) Transesterification of Jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87:2286–2295

    CrossRef  Google Scholar 

  • Tesso TT, Claflin LE, Tuinstra MR (2005) Analysis of stalk rot resistance and genetic diversity among drought tolerant sorghum genotypes. Crop Sci 45:645–652

    CrossRef  Google Scholar 

  • Tian Y, Zhao L, Meng H, Sun L, Yan J (2009) Estimation of un-used land potential for biofuels development in (the) People’s Republic of China. Appl Energy 86:S77–S85

    CrossRef  Google Scholar 

  • Tian X, Liao Q, Zhu X, Wang Y, Zhang P, Li J, Wang H (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresour Technol 101:977–983. https://doi.org/10.1016/j.biortech.2009.09.007

    CrossRef  Google Scholar 

  • Tomes D, Lakshmanan P, Songstad D (2010) Biofuels: global impact on renewable energy, production agriculture, and technological advancements. Springer Science & Business Media

    Google Scholar 

  • Tran DT, Yeh KL, Chen CL, Chang JS (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119–127

    CrossRef  Google Scholar 

  • Tran DT, Chen CL, Chang JS (2013) Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol 135:213–221

    CrossRef  Google Scholar 

  • Tsujimura S, Wadano A, Kano K, Ikeda T (2001) Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzy Microb Technol 29:225–231

    CrossRef  Google Scholar 

  • Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Nat Acad Sci 73:3298–3302

    CrossRef  Google Scholar 

  • Umakanth A, Kumar AA, Vermerris W, Tonapi V (2019) Sweet sorghum for biofuel industry. In: Breeding sorghum for diverse end uses. Elsevier, pp 255–270

    Google Scholar 

  • Uyar B, Eroglu I, Yücel M, Gündüz U (2009) Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int J Hydrog Energy 34:4517–4523

    CrossRef  Google Scholar 

  • Uzoejinwa BB, He X, Wang S, Abomohra AEF, Hu Y, Wang Q (2018) Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Conv Manag 163:468–492

    CrossRef  Google Scholar 

  • van Leeuwen BN, van der Wulp AM, Duijnstee I, van Maris AJ, Straathof AJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387

    CrossRef  Google Scholar 

  • Varel V, Chen T, Hashimoto A (1988) Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Con Recy 1:19–26

    CrossRef  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58. https://doi.org/10.1002/jobm.201500459

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S-142–S-153

    Google Scholar 

  • Voloshin RA, Kreslavski VD, Zharmukhamedov SK, Bedbenov VS, Ramakrishna S, Allakhverdiev SI (2015) Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res J 2:227–235

    CrossRef  Google Scholar 

  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI (2016) Biofuel production from plant and algal biomass. Int J Hydrog Energy 41:17257–17273

    CrossRef  Google Scholar 

  • Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844

    CrossRef  Google Scholar 

  • Wang LS, Ge XY, Zhang WG (2007) Improvement of ethanol yield from raw corn flour by Rhizopus sp. World J Microbiol Biotechnol 23:461–465

    CrossRef  Google Scholar 

  • Wang D, Portis AR, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus giganteus. Plant Physiol 148:557–567

    CrossRef  Google Scholar 

  • Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: a review. Bioresour Technol 258:302–309. https://doi.org/10.1016/j.biortech.2018.03.064

    CrossRef  Google Scholar 

  • Weijde Tvd, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107

    Google Scholar 

  • Welker C, Balasubramanian V, Petti C, Rai K, DeBolt S, Mendu V (2015) Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 8:7654–7676

    CrossRef  Google Scholar 

  • Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P (2014) Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Fact 13:92

    CrossRef  Google Scholar 

  • Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864

    CrossRef  Google Scholar 

  • Xie GJ, Liu BF, Guo WQ, Ding J, Xing DF, Nan J, Ren HY, Ren NQ (2012) Feasibility studies on continuous hydrogen production using photo-fermentative sequencing batch reactor. Int J Hydrog Energy 37:13689–13695. https://doi.org/10.1016/j.ijhydene.2012.02.107

    CrossRef  Google Scholar 

  • Xie GJ, Liu BF, Wen HQ, Li Q, Yang CY, Han WL, Nan J, Ren NQ (2013) Bioflocculation of photo-fermentative bacteria induced by calcium ion for enhancing hydrogen production. Int J Hydrog Energy 38:7780–7788. https://doi.org/10.1016/j.ijhydene.2013.04.099

    CrossRef  Google Scholar 

  • Xu R, Mi Y (2011) Simplifying the process of microalgal biodiesel production through in situ transesterification technology. J Am Oil Chem So 88:91–99

    CrossRef  Google Scholar 

  • Xu C, Ma F, Zhang X, Chen S (2010) Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J Agric Food Chem 58:10893–10898

    CrossRef  Google Scholar 

  • Xu GC, Ding JC, Han RZ, Dong JJ, Ni Y (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369

    CrossRef  Google Scholar 

  • Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. PhD thesis, IARI, New Delhi/BIT, Ranchi pp 234. https://doi.org/10.13140/rg.2.1.2948.1283/2

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious pgp attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:1–8

    Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    CrossRef  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    CrossRef  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    CrossRef  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK (2015d) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep https://doi.org/10.1038/srep12293

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    CrossRef  Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:1–3

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017c) Extreme cold environments: A suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4

    CrossRef  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017d) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in Crops: Diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332

    CrossRef  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from Rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnol bioeng. USA, pp 13–41. https://doi.org/10.1016/b978-0-444-63994-3.00002-3

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the Genus Penicillium in Different Habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnol bioeng, Penicillium System properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/b978-0-444-63501-3.00001-6

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018d) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution-Volume 2: microbes for sustainable agro-ecosystem. Springer, Singapore, pp 197–240. https://doi.org/10.1007/978-981-10-7146-1_11

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi: Volume 1: diversity and enzymes perspectives. Springer International Publishing, Switzerland

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi: Volume 2: Perspective for value-added products and environments. Springer International Publishing, Switzerland

    Google Scholar 

  • Yan Y, Li X, Wang G, Gui X, Li G, Su F, Wang X, Liu T (2014) Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl Energy 113:1614–1631

    CrossRef  Google Scholar 

  • Yao S, Mikkelsen MJ (2010) Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 88:199–208

    CrossRef  Google Scholar 

  • Yong-Hong L, Bo L, Zong-Bao Z, Feng-Wu B (2006) Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chin J Biotechnol 22:650–656

    CrossRef  Google Scholar 

  • Yun Y-M, Lee M-K, Im S-W, Marone A, Trably E, Shin S-R, Kim M-G, Cho S-K, Kim D-H (2018) Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour Technol 248:79–87

    CrossRef  Google Scholar 

  • Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (2007) Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe (III) reduction. Extremophiles 11:1–7

    CrossRef  Google Scholar 

  • Zhang X, Xu C, Wang H (2007a) Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng 104:149–151

    CrossRef  Google Scholar 

  • Zhang X, Yu H, Huang H, Liu Y (2007b) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeteriorat Biodegrad 60:159–164

    CrossRef  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007c) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025

    CrossRef  Google Scholar 

  • Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101:4959–4964

    CrossRef  Google Scholar 

  • Zhang L, Li X, Yong Q, Yang ST, Ouyang J, Yu S (2016a) Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. Bioresour Technol 203:173–180

    CrossRef  Google Scholar 

  • Zhang SC, Lai QH, Lu Y, Liu ZD, Wang TM, Zhang C, Xing XH (2016b) Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria. J Biosci Bioeng 122:482–487

    CrossRef  Google Scholar 

  • Zhang Z, O’Hara IM, Mundree S, Gao B, Ball AS, Zhu N, Bai Z, Jin B (2016c) Biofuels from food processing wastes. Curr Opin Biotechnol 38:97–105

    CrossRef  Google Scholar 

  • Zhao R, Bean S, Wang D, Park SH, Schober T, Wilson J (2009) Small-scale mashing procedure for predicting ethanol yield of sorghum grain. J Cereal Sci 49:230–238

    CrossRef  Google Scholar 

  • Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuel 5:50

    CrossRef  Google Scholar 

  • Zhu H, Fang HH, Zhang T, Beaudette LA (2007) Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 32:4112–4118

    CrossRef  Google Scholar 

  • Zhuang Q, Qin Z, Chen M (2013) Biofuel, land and water: maize, switchgrass or Miscanthus? Environ Res Lett 8:015020

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Harcharan Singh Dhaliwal, Vice Chancellor, Eternal University, Baru Sahib, Himachal Pradesh, India, for providing infrastructural facilities and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajar Nath Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kour, D. et al. (2019). Technologies for Biofuel Production: Current Development, Challenges, and Future Prospects. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)