Skip to main content

Prospects for Biodiesel and Biogas Production in India: A Review of Technologies

  • 855 Accesses

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

Bioenergy is the traditional and versatile source of energy with renewed interest due to its carbon mitigation potential assuming CO2 neutrality, need for diversification of energy sources, and the renewable nature of feedstocks. Biofuels are receiving increased attention due to their potential to enhance the energy independence in the transportation sector with simultaneous climate change mitigation by reducing GHG emissions. To be able to make biofuel production in India a commercial success, we may need to have strong technological base supported by policy support mechanisms. If produced sustainably, biofuels may offer a part of the solution for problems such as energy security, import dependence for energy, rural employment generation, and climate change mitigation.

Keywords

  • Biodiesel
  • Biogas
  • Biofuel policy
  • Transesterification
  • Anaerobic digestion
  • Climate change mitigation
  • GHG emissions
  • Blending targets

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_17
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2

References

  • Alamu O, Waheed M, Jekayinfa S, Akintola T (2007) Optimal transesterification duration for biodiesel production from Nigerian palm kernel oil. Agric Eng Int CIGR J 9:1–11

    Google Scholar 

  • Albuquerque MC, Jiménez-Urbistondo I, Santamaría-González J, Mérida-Robles JM, Moreno-Tost R, Rodríguez-Castellón E, Jiménez-López A, Azevedo DC, Cavalcante CL Jr, Maireles-Torres P (2008) CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Appl Cat A Gen 334:35–43

    CrossRef  Google Scholar 

  • Antunes WM, de Oliveira Veloso C, Henriques CA (2008) Transesterification of soybean oil with methanol catalyzed by basic solids. Catal Today 133:548–554

    CrossRef  Google Scholar 

  • Arzamendi G, Campo I, Arguinarena E, Sánchez M, Montes M, Gandia L (2007) Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: comparison with homogeneous NaOH. Chem Eng J 134:123–130

    CrossRef  Google Scholar 

  • Barakos N, Pasias S, Papayannakos N (2008) Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst. Bioresour Technol 99:5037–5042

    CrossRef  Google Scholar 

  • Batstone DJ (2006) Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use. Rev Environ Sci Biotechnol 5 (1):57–71

    Google Scholar 

  • Batstone D, Keller J (2003) Industrial applications of the IWA anaerobic digestion model no. 1 (ADM1). Water Sci Technol 47:199–206

    CrossRef  Google Scholar 

  • Batstone DJ, Pind PF, Angelidaki I (2003) Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnol Bioeng 84 (2):195–204

    Google Scholar 

  • Batstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotechnol Bioeng 102(5):1513–1520

    CrossRef  Google Scholar 

  • Berchmans HJ, Hirata S (2008) Biodiesel production from crude jatropha curcas L. Seed oil with a high content of free fatty acids. Bioresour Technol 99(6):1716–1721

    Google Scholar 

  • Berchmans HJ, Morishita K, Takarada T (2010) Kinetic study of methanolysis of Jatropha curcas-waste food oil mixture. J Chem Eng Jpn 43:661–670

    Google Scholar 

  • Bernard O, Hadj-Sadok Z, Dochain D, Genovesi A, Steyer JP (2001) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75(4):424–438

    Google Scholar 

  • Bhunia P, Ghangrekar MM (2008) Analysis, evaluation, and optimization of kinetic parameters for performance appraisal and design of UASB reactors. Bioresour Technol 99 (7):2132–2140

    Google Scholar 

  • Census of India (2009–10) Government of India

    Google Scholar 

  • Chen G, Ying M, Li W (2006) Enzymatic conversion of waste cooking oils into alternative fuel biodiesel. Appl Biochem Biotechnol 132:911–921

    CrossRef  Google Scholar 

  • Chen H, Peng B, Wang D, Wang J (2007) Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Front Chem Sci Eng 1:11–15

    CrossRef  Google Scholar 

  • Chitra P, Venkatachalam P, Sampathrajan A (2005) Optimization of experimental conditions for biodiesel production from alkali–catalysed transesterification of Jatropha curcas oil. Energy Sustain Dev 9:13–18

    CrossRef  Google Scholar 

  • de Almeida RM, Noda LK, Goncalves NS, Meneghetti SM, Meneghetti MR (2008) Transesterification reaction of vegetable oils, using superacid sulfated TiO2–base catalysts. Appl Cat A Gen 347:100–105

    CrossRef  Google Scholar 

  • Dias JM, Alvim–Ferraz MCM, Almeida MF (2008) Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 87:3572–3578

    Google Scholar 

  • Donoso-Bravo A, Garcia G, Perez-Elvira SI, Fdz-Polanco F (2011) Initial rate technique as a procedure to predict the anaerobic digester operation. Biochem Eng J 53:275–280

    CrossRef  Google Scholar 

  • Donoso-Bravo A, Retamal C, Carballa M, Ruiz-Filippi G, Chamy R (2009b) Influence of temperature on hydrolysis, acidogenesis and methanogenesis in anaerobic digestion: parameter identification and modeling application. Water Science Technol 60(1):9–17

    Google Scholar 

  • Endalew AK, Kiros Y, Zanzi R (2011) Heterogeneous catalysis for biodiesel production from Jatropha curcas oil. Energy 36:2693–2700

    CrossRef  Google Scholar 

  • Flotats X, Ahring BK, Angelidaki I (2003) Parameter identification of thermophilic anaerobic degradation of valerate. Appl Biochem Biotechnol 109(1–3):47–62

    CrossRef  Google Scholar 

  • Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    CrossRef  Google Scholar 

  • Furuta S, Matsuhasbi H, Arata K (2004) Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal Commun 5:721–723

    CrossRef  Google Scholar 

  • Garlapati VK, Kant R, Kumari A, Mahapatra P, Das P, Banerjee R (2013) Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production. Sustain Chem Process 1:11. https://doi.org/10.1186/2043-7129-1-11

    CrossRef  Google Scholar 

  • Gashaw A, Teshita A (2014) Production of biodiesel from waste cooking oil and factors affecting its formation: a review. Int J Renew Sustain Energy 3(5):92–98. https://doi.org/10.11648/j.ijrse.20140305.12. ISSN 2326-9715 (Print), ISSN 2326-9723 (Online)

  • Ghaniyari-Benis S, Martin A, Borja R (2010) Kinetic modelling and performance prediction of a hybrid anaerobic baffled reactor treating synthetic wastewater at mesophilic temperature. Process Biochem 45(10):1616–1623

    CrossRef  Google Scholar 

  • Guan G, Kusakabe K, Sakurai N, Moriyama K (2009) Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether. Fuel 88:81–86

    CrossRef  Google Scholar 

  • Haag JE, Vande Wouwer A, Queinnec I (2003) Macroscopic modelling and identification of an anaerobic waste treatment process. Chem Eng Sci 58:4307–4316

    Google Scholar 

  • Helwani Z, Othman MR, Aziz N, Fernando WJN, Kim J (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 90:1502–1514

    CrossRef  Google Scholar 

  • Huaping Z, Zongbin W, Yuanxiong C, Ping Z, Shijie D, Xiaohua L (2006) Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chin J Catal 27:391–396

    CrossRef  Google Scholar 

  • Jain S, Sharma MP (2010) Kinetics of acid base catalyzed transesterification of jatropha curcas oil. Bioresour Technol 101(20):7701–7706

    Google Scholar 

  • Jin-Suk L, Shiro S (2010) Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresour Technol 101(19):7191–7200

    CrossRef  Google Scholar 

  • Kalfas H, Skiadas IV, Gavala HN, Stamatelatou K, Lyberatos G (2006) Application of ADM1 for the simulation of anaerobic digestion of olive pulp under mesophilic and thermophilic conditions. Water Sci Technol 54(4):149–156

    CrossRef  Google Scholar 

  • Karmee SK, Chadha A (2005) Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol 96:1425–1429

    CrossRef  Google Scholar 

  • Kaur M, Ali A (2011) Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from Karanja and jatropha oils. Renew Ene 36:2866–2871

    CrossRef  Google Scholar 

  • Kawakami K, Oda Y, Takahashi R (2011) Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil. Biotechnol Biofuels 4:42–52

    CrossRef  Google Scholar 

  • Koch K, Lubken M, Gehring T, Wichern M, Horn H (2010) Biogas from grass silage measurements and modeling with ADM1. Bioresour Technol 101 (21):8158–8165

    Google Scholar 

  • Kumar GR, Ravi R, Chadha A (2011) Kinetic studies of base–catalyzed transesterification reactions of non–edible oils to prepare biodiesel: the effect of co–solvent and temperature. Energy Fuels 25:2826–2832

    CrossRef  Google Scholar 

  • Lakshmi CV, Viswanath K, Venkateshwar S, Satyavathi B (2011) Mixing characteristics of the oil– methanol system in the production of biodiesel using edible and non–edible oils. Fuel Process Technol 92:1411–1417

    CrossRef  Google Scholar 

  • Li E, Rudolph V (2008) Transesterification of vegetable oil to biodiesel over MgO functionally mesoporous catalysts. Energy Fuels 22:143–149

    Google Scholar 

  • Liu X, He H, Wang Y, Zhu S (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87:216–221

    CrossRef  Google Scholar 

  • Lokshina L, Vavilin V, Kettunen H, Rintala J, Holliger C, Nozhevnikova A (2001) Evaluation of kinetic coefficients using integrated Monod and Haldane models for low-temperature acetoclastic methanogenesis. Water Res 35(12):2913–2922

    CrossRef  Google Scholar 

  • Lopez I, Borzacconi L (2009) Modelling a full scale UASB reactor using a COD global balance approach and state observers. Chem Eng J 146:1–5

    CrossRef  Google Scholar 

  • Lopez I, Borzacconi L (2010) Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation. Waste Manag 30:1813–1821

    CrossRef  Google Scholar 

  • Lubes ZIZ, Zakaria M (2009) Analysis of parameters for fatty acid methyl esters production from refined palm oil for use as biodiesel in the single–and two stage processes. Malay J Biochem Mol Biol 17:5–9

    Google Scholar 

  • Lv P, Wang X, Yuan Z, Tan T (2008) Conversion of soybean oil to biodiesel fuel with immobilized Candida lipase on textile cloth. Energy Source Part A 30:872–879

    Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    CrossRef  Google Scholar 

  • Meneghetti SMP, Meneghetti MR, Wolf CR, Silva EC, Lima GES, Silva LL (2006) Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energy Fuels 20:2262–2265

    CrossRef  Google Scholar 

  • MNRE—National Policy on Biofuels MNRE (2016) GoI. http://www.mnre.gov.in/file-manager/UserFiles/biofuel_policy.pdf. Accessed 31 July 2016

  • MNRE—Physical progress (Achievements) MNRE (2017). https://mnre.gov.in/file-manager/annual-report/2017-2018/EN/pdf/chapter-6.pdf. Accessed 2 Jan 2019

  • Mulimani H, Hebbal OD, Navindgi MC (2012) Extraction of biodiesel from vegetable oils and their comparisons. Int J Adv Sci Res Technol 2(2):242–250

    Google Scholar 

  • Muller TG, Noykova N, Gyllenberg M, Timmer J (2002) Parameter identification in dynamical models of anaerobic waste water treatment. Math Biosci 177:147–160

    Google Scholar 

  • Nabi MdN, Hustad JE, Kannan D (2008) First generation biodiesel production from non–edible vegetable oil and its effect on diesel emissions. In: Proceedings of the 4th BSME–ASME international conference on thermal engineering

    Google Scholar 

  • Noykova N, Gyllenberg M (2000) Sensitivity analysis and parameter estimation in a model of anaerobic wastewater treatment processes with substrate inhibition. Bioprocess Eng 23:343–349

    CrossRef  Google Scholar 

  • Palatsi J, Illa J, Prenafeta-Boldu FX, Laureni M, Fernandez B, Angelidaki I, Flotats X (2010) Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modelling. Bioresour Technol 101(7):2243–2251

    Google Scholar 

  • Patil PD, Gude VG, Mannarswamy A, Deng S (2009) Biodiesel production from jatropha curcas, waste cooking, and camelina sativa oils. Ind Eng Chem Res 48(24):10850–10856

    CrossRef  Google Scholar 

  • Planning Commission (2003) Report of the committee on development of biofuel, Government of India, 2003, p. 61. http://planningcommission.nic.in/reports/genrep/cmtt_bio.pdf. Accessed 31 July 2016

  • Rachmaniah O, Ju YH, Vali SR, Tjondronegoro I, Musfil AS (2004) A study on acid catalyzed transesterification of crude rice bran oil for biodiesel production. In: Youth energy symposium, 19th world energy congress and exhibition, Sydney (Australia), 5–9 Sept 2004

    Google Scholar 

  • Rashid U, Anwar F, Ansari TM, Arif M, Ahmad M (2009a) Optimization of alkaline transesterification of rice bran oil for biodiesel production using response surface methodology. J Chem Tech Biotechnol Part A 84:1364–1370

    CrossRef  Google Scholar 

  • Rashid U, Anwar F, Knothe G (2009b) Evaluation of biodiesel obtained from cottonseed oil. Fuel Process Technol Part B 90:1157–1163

    CrossRef  Google Scholar 

  • Reyes I, Ciudad G, Misra M, Mohanty A, Jeison D, Navia D (2012) Novel sequential batch membrane reactor to increase fatty acid methyl esters quality at low methanol to oil molar ratio. Chem Eng J 197:459–467

    CrossRef  Google Scholar 

  • Saravanan N, Puhan S, Nagarajan G, Vedaraman N (2010) An experimental comparison of transesterification process with different alcohols using acid catalysts. Biomass Bioenergy 34:999–1005

    CrossRef  Google Scholar 

  • Shao P, Ming X, He J, Sun P (2008) Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soap stock. Food Bioprod Proces 86:283–289

    CrossRef  Google Scholar 

  • Shu Q, Yang B, Yuan H, Qing S, Zhu G (2007) Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal Commun 8:2159–2165

    Google Scholar 

  • Shumaker JL, Crofcheck C, Tackett SA, Santillan–Jimenez E, Morgan T, Ji Y, Crocker M, Toops TJ (2008) Biodiesel synthesis using calcined layered double hydroxide catalysts. App Catal B Env 82:120–130

    Google Scholar 

  • Silva DNL, Batistella CB, Filho RM, Maciel MRW (2009) Biodiesel production from castor oil: optimization of alkaline ethanolysis. Energy Fuels 23:5636–5642

    CrossRef  Google Scholar 

  • Soriano NU Jr, Vendittia R, Argyropoulos DS (2009) Biodiesel synthesis via homogeneous Lewis acid catalyzed transesterification. Fuel 88:560–565

    CrossRef  Google Scholar 

  • Supamathanon N, Wittayakun J, Prayoonpokarach S (2011) Properties of Jatropha seed oil from Northeastern Thailand and its transesterification catalyzed by potassium supported on NaY zeolite. J Ind Eng Chem 17:182–185

    CrossRef  Google Scholar 

  • Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ (2004) Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal A Gen 257:213–223

    CrossRef  Google Scholar 

  • Tapanes NCO, Aranda DAG, Carneiro JWDM, Antunes OAC (2008) Transesterification of Jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87:2286–2295

    CrossRef  Google Scholar 

  • Taufiq-Yap YH, Lee HV, Hussein MZ, Yunus R (2011) Calcium–based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass Bioenergy 35:827–834

    CrossRef  Google Scholar 

  • Trakarnpruk W, Porntangjitlikit S (2008) Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renew Energy 33:1558–1563

    CrossRef  Google Scholar 

  • UNFCCC (2016) India’s intended nationally determined contribution (INDC): working towards climate justice. http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf. Accessed 31 July 2016

  • Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G (2004) Biodiesel analytical methods: August 2002–January 2004. National renewable energy laboratory, NREL/SR–510–36240, Colorado, July 2004

    Google Scholar 

  • Wang R, Hanna MA, Zhou WW, Bhadury PS, Chen Q, Song BA, Yang S (2011) Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L. Bioresour Technol 102(2):1194–1199

    Google Scholar 

  • Wang Y, Zhang F, Yu S, Yang L, Li D, Evans DG, Duan X (2008) Preparation of macrospherical magnesia–rich magnesium aluminate spinel catalysts for methnolysis of soybean oil. Chem Eng Sci 63(17):4306–4312

    CrossRef  Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (2001) Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J Am Oil Chem Soc 78:703–707

    CrossRef  Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara A, Tominaga T (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 17:151–155

    CrossRef  Google Scholar 

  • Wu WH, Foglia TA, Marmer WN, Phillips JG (1999) Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodology. J Am Oil Chem Soc 76:517–521

    CrossRef  Google Scholar 

  • Xie WL, Peng H, Chen LG (2006) Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J Mol Catal A Chem 246:24–32

    CrossRef  Google Scholar 

  • Yücel Y (2011) Biodiesel production from pomace oil by using lipase immobilized onto olivepomace. Bioresour Technol 102:3977–3980

    CrossRef  Google Scholar 

  • Zagonel GF, Peralta-Zamora PG, Ramos LP (2002) Production of ethyl esters from crude soybean oil: optimization of reaction yields using a 23 experimental design and development of a new analytical strategy for reaction control. Preprints Symp Am Chem Soc Div Fuel Chem 47:363–364

    Google Scholar 

  • Zanette AF, Barella RA, PergherSBC Treichel H, Oliveira D, Mazutti MA (2011) Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts. Renew Energy 36:726–731

    CrossRef  Google Scholar 

  • Zeng HY, Feng Z, Deng X, Li YQ (2008) Activation of Mg–Al hydrotalcite catalysts for transesterification of rape oil. Fuel 87(13):3071–3076

    CrossRef  Google Scholar 

  • Zieba A, Pacuza A, Drelinkiewicz A (2010) Transesterification of triglycerides with methanol catalyzed by heterogeneous zinc hydroxy nitrate catalyst. Evaluation of variables affecting the activity and stability of catalyst. Energy Fuels 24:634–645

    Google Scholar 

  • 5th Assessment Report, Climate Change (2013) The physical science basis (Summary for Policy makers). Working Group I, IPCC. https://ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_FINAL.pdf. Accessed 24 July 2016

  • 5th Assessment Report, Climate Change (2014) Mitigation of climate change, Working Group III, Intergovernmental Panel on Climate Change (IPCC)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreenivas Chigullapalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chigullapalli, S., Rao, A.B. (2019). Prospects for Biodiesel and Biogas Production in India: A Review of Technologies. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)