Skip to main content

Anaerobic Digestion: Biogas Production from Agro-industrial Wastewater, Food Waste, and Biomass

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

In this chapter, the biological treatment process of wastewater and biomass, called anaerobic digestion, is discussed. It is a potential bioprocess to produce renewable energy as methane and hydrogen from underestimated and unexploited sources of organic matter. More specifically, this chapter will discuss the types of biodigesters utilized, the operation modes and the main parameters that affect the process, aiming to provide the knowledge to achieve process stability and reproducibility. The operation strategies, such as substrates co-digestion and two-stage process, and biomass pretreatment will be as well discussed in detail. This chapter will focus on some Brazilian agro-industrial effluents (vinasse and manipueira), as well as food wastes, lignocellulosic biomass, and micro/macroalgae for biogas production. To conclude, the overall objective of the chapter is to give general information and possibilities to apply and conduct the anaerobic digestion process.

Keywords

  • Co-digestion
  • Hydrogen
  • Inoculum treatment
  • Methane
  • Reactors
  • Renewable energy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_16
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 16.1

Source Adapted from Moraes et al. (2015)

Fig. 16.2

References

  • Abud AKS, Silva CEF (2019) Bioethanol in Brazil: status, challenges and perspectives to improve the production. In: Ray RC, Ramachandran S (eds) Bioethanol from food crops: sustainable sources, interventions and challenges. Elsevier, UK, pp 417–443

    CrossRef  Google Scholar 

  • Ahring B, Angelidaki I, Johansen K (1992) Anaerobic treatment of manure together with industrial waste. Water Sci Technol 25:311–318

    CrossRef  Google Scholar 

  • Amin FR, Khalid H, Zhang H, u Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Exp 7:72

    CrossRef  Google Scholar 

  • Amorim ELC (2007) Desempenho de reator anaeróbio de leito fluidificado operado sob condições de aumento progressivo da carga orgânica no tratamento de fenol. 2007. 145 f. Dissertação (Mestrado em Engenharia Hidráulica e Saneamento) –Universidade de São Paulo, São Carlos-SP

    Google Scholar 

  • Amorim ELC, Barros AR, Damianovic MHRZ, Silva EL (2009) Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production thorough dark fermentation of glucose. Int J Hydrog Energy 34:783–790

    CrossRef  Google Scholar 

  • Amorim N, Alves I, Martins J, Amorim E (2014) Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor. Braz J Chem Eng 31:603–612

    CrossRef  Google Scholar 

  • Andrade WR, Xavier CAN, Coca FOCG, Arruda LDO, Santos TMB (2016) Biogas production from ruminant and monogastric animal manure co-digested with manipueira. Arch Zootec 65(251):375–380

    CrossRef  Google Scholar 

  • Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants. Appl Biochem Biotechnol 109(1–3):95–105

    CrossRef  Google Scholar 

  • Appels L, Lauwers J, Degreve J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011a) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15(9):4295–4301

    CrossRef  Google Scholar 

  • Appels L, Assche AV, Willems K, Degreve J, Impe JV, Dewil R (2011b) Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour Technol 102:4124–4130

    CrossRef  Google Scholar 

  • Araujo DM, Duda RM, Oliveira RA (2016) Produção de metano em reatores anaeróbios termofílicos utilizando vinhaça de cana-de-açúcar. Ciência & Tecnologia: Fatec-JB, Jaboticabal, 8:113–118, Suplemento

    Google Scholar 

  • Argun H, Kargi F (2009) Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int J Hydrog Energy 34:8543–8551

    CrossRef  Google Scholar 

  • Baldacin ACS, Pinto GMF (2015) Biodigestão anaeróbia da vinhaça: aproveitamento energético do biogás. Rev Eletrônica FACP 7:1–17

    Google Scholar 

  • Barros AR, Adorno MAT, Sakamoto IK, Maintinguer SI, Varesche MBA, Silva EL (2011) Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production. Bioresour Technol 102:3840–3847

    CrossRef  Google Scholar 

  • Barros VG, Duda RM, Oliveira RA (2016) Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge. Braz J Microbiol 47:628–639

    CrossRef  Google Scholar 

  • Bird KT, Chynoweth DP, Jerger DE (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2(3):207–213

    CrossRef  Google Scholar 

  • Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt FT, Bouwer EJ (2015) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Biores Tech 183:229–239

    Google Scholar 

  • Boontian N (2014) Conditions of anaerobic digestion of biomass. Int J Environ Ecol Eng (World Academy of Science, Engineering and Technology) 8(9):1036–1040

    Google Scholar 

  • Cabello PE, Scognamiglio FP, Terán FJC (2009) Tratamento de vinhaça em reator anaeróbio de leito fluidizado. Engenharia Ambiental 6(1):321–338

    Google Scholar 

  • Campuzano R, Gonzalez-Martinez S (2016) Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag 54:3–12

    CrossRef  Google Scholar 

  • Cappelletti BM, Reginatto V, Amante ER, Antônio RV (2011) Fermentative production of hydrogen from cassava processing wastewater by clostridium acetobutylicum. Renew Energy 36(12):3367–3372

    CrossRef  Google Scholar 

  • Cereda MP (2001) Manejo, uso e tratamento de subprodutos da industrialização da mandioca. São Paulo: Fundação Cargill, 320 p. il. (Culturas de tuberosas amiláceas latino americanas, 4)

    Google Scholar 

  • Chaganti SR, Kimb D-H, Lalman JA (2012) Dark fermentative hydrogen production by mixed anaerobic cultures: effect of inoculum treatment methods on hydrogen yield. Renew Energy 48:117–121

    CrossRef  Google Scholar 

  • Chandra R, Takeuchi H, Hasegaw T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476

    CrossRef  Google Scholar 

  • Chen L, Neibling H (2014) University of Idaho: anaerobic digestion basics. Accessed Out 04, 2018 https://www.cals.uidaho.edu/edcomm/pdf/CIS/CIS1215.pdf

  • Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57:56–64

    CrossRef  Google Scholar 

  • Chernicharo CAL (1997) Reatores Anaeróbios - Princípios do tratamento biológico de águas residuárias, 2nd edn. UFMG. Departamento de Engenharia Sanitária e Ambiental v, Belo Horizonte, p 5

    Google Scholar 

  • Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336. https://doi.org/10.1016/j.biortech.2013.06.017

    CrossRef  Google Scholar 

  • Cisneros-Perez C, Carrillo-Reyes J, Celis LB, Alatriste-Mondragon F, Etchebehere C, Razo-Flores E (2015) Inoculum pretreatment promotes differences in hydrogen production performance in EGSB reactors. Int J Hydrog Energy 40:6329–6339

    CrossRef  Google Scholar 

  • Davidsson Å, Gruyberger C, Christensen TH, Hansen TL, La Cour Jansen J (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag 27(3):406–414

    CrossRef  Google Scholar 

  • De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33:1345–1361

    CrossRef  Google Scholar 

  • De Gioannis G, Muntoni A, Polettini A, Pomi R, Spiga D (2017) Energy recovery from one-and two-stage anaerobic digestion of food waste. Waste Manag 8:505–602

    Google Scholar 

  • Del Bianchi VL (1998) Balanço de massa e de energia do processamento de farinha de mandioca em uma empresa de médio porte de Estado de São Paulo. Tese (Doutorado em Agronomia), Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu

    Google Scholar 

  • Deganutti R, Palhaci M, Do CJP, Rossi M (2002) Biodigestores rurais: modelo indiano, chinês e batelada. In: Encontro de Energia no Meio Rural, 4, Campinas-SP, Anais eletrônicos

    Google Scholar 

  • Ding L, Cheng J, Xia A, Jacob A, Voelklein M, Murphy JD (2016) Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro-and micro-algal biomass. Bioresour Technol 218:224–231

    CrossRef  Google Scholar 

  • Eker S, Sarp M (2017) Hydrogen gas production from waste paper by dark fermentation: effects of initial substrate and biomass concentrations. Int J Hydrog Energy 42(4):2562–2568

    CrossRef  Google Scholar 

  • EPA - Environmental Protection Agency. Beneficial Uses of Manure and Environmental Protection. United States Environmental Protection Agency (2015) Disponível em. https://www.epa.gov/npdes/beneficial-uses-manure-and-environmental-protection. Acessado em 01 jul 2018

  • EPA - Environmental Protection Agency. Recovering Value from Waste: Anaerobic Digester System Basics. United States Environmental Protection Agency. Disponível em. https://www.epa.gov/agstar/recovering-value-waste-anaerobic-digester-system-basics. Acessado em 01 jul 2018

  • FAO - Food and Agriculture Organization. FAO´s Work on Climate Change. Food and Agriculture Organization of the United Nations, Rome, (2017) Disponível em. http://www.fao.org/3/a-i8037e.pdf. Acessado em 01 jul 2018

  • Faria AAA (2017) Fermentação metanogênica mesofílica de melaço e termofílica de vinhaça em reatores UASB. Novas Edições Acadêmicas, Editora. ISBN-10: 3330759658; ISBN-13: 978-3330759657

    Google Scholar 

  • Fernandes BS, Peixoto G, Albrecht FR, Saavedra Del Aguila NK, Zaiat M (2010) Potential to produce biohydrogen from various waste waters. Energy Sustain Dev 14(2):143–148

    CrossRef  Google Scholar 

  • Ferraz Júnior AND, Wenzel J, Etchebehere C, Zaiat M (2014) Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrog Energy 1–11

    Google Scholar 

  • Gaudencio, BO (2013) Avaliação do desempenho de dois reatores anaeróbios de leito fixo e fluxo ascendente alimentados com efluente de indústria cervejeira. Doctoral dissertation, Universidade de São Paulo

    Google Scholar 

  • Gehring CG (2014) Análise da geração de energia elétrica a partir do biogás produzido na fermentação anaeróbica de vinhaça. Trabalho de Conclusão de Curso- Escola de Engenharia Elétrica de São Carlos. 124p

    Google Scholar 

  • Girotto F, Pivato A, Cossu R, Nkeng GE, Lavagnolo MC (2017a) The broad spectrum of possibilities for spent coffee grounds valorisation. J Mater Cycles Waste Manag 1–7. https://doi.org/10.1007/s10163-017-0621-5

  • Girotto F, Lavagnolo MC, Pivato A (2017b) Spent Coffee Grounds alkaline pre-treatment as biorefinery option to enhance their anaerobic digestion yield. Waste Biomass Valorization 1–6. https://doi.org/10.1007/s12649-017-0033-8

  • Gokfiliz P, Karapinar I (2017) The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int J Hydrog Energy 42(4):2553–2561

    CrossRef  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47–55

    Google Scholar 

  • Gonzalez-Fernandez C, Leon-Confreces C, Garcia-Encina PA (2008) Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresour Technol 99(18):8710–8714

    CrossRef  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Molinuevo-Salces B (2015) Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour Technol 198:896–906

    CrossRef  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 97:583–591

    Google Scholar 

  • Heydt AR, Cremonez PA, Parisotto EIB, Meier TRW, Teleken JG (2015) Biodigestão anaeróbia de resíduos líquidos de fecularia com adição de glicerol em fase termofílica. Revista gestão & sustentabilidade ambiental, Florianópolis, pp 498–514

    Google Scholar 

  • Hickey RF, Owens RW (1981) Methane generation from high-strength industrial wastes with the anaerobic biological fluidized bed. Biotech Bioengin 23:399–413

    Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogasutilization. Bioresour Technol 100(2):5478–5484

    CrossRef  Google Scholar 

  • ICO - International Coffee Organization (2017) Trade statistics tables. http://www.ico.org/trade_statistics.asp

  • Instituto Brasileiro de Geografia E Estatística (IBGE) Indicadores IBGE (2018) Estatística da Produção Agrícola

    Google Scholar 

  • Intanoo P, Chaimongkol P, Chavadej S (2016) Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. Int J Hydrog Energy 41:6107–6114

    CrossRef  Google Scholar 

  • Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sustain Energy Rev 75:692–709

    CrossRef  Google Scholar 

  • Jingura RM, Matengaifa R (2009) Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe. Renew Sustain Energy Rev 13:1116–1120

    CrossRef  Google Scholar 

  • Kaparaju P, Angelidaki I (2008) Effect of temperature and active biogas process on passive separation of digested manure. Bioresour Technol 99:1345–1352

    CrossRef  Google Scholar 

  • Kargi F, Eren NS, Ozmihci S (2012) Bio-hydrogen production from cheese whey powder (CWP) solution: Comparison of thermophilic and mesophilic dark fermentations. Int J Hydrog Energy 37:8338–8342

    CrossRef  Google Scholar 

  • Karthikeyan OP, Visvanathan C (2012) Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresour Technol 113:294–302

    CrossRef  Google Scholar 

  • Kim J, Park C, Kim TH, Lee M, Kim S, Kim SW, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95(3):271–275

    CrossRef  Google Scholar 

  • Kim JK, Oh BR, Chun YN, Kim SW (2006) Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng 102(4):328–332

    CrossRef  Google Scholar 

  • Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399

    CrossRef  Google Scholar 

  • Kuczman O, Gomes SD, Tavares MHF, Torres DGB, Alcântara MS (2011) Produção específica de biogás a partir de manipueira em reator de fase única. Eng Agríc Jaboticabal 31(1):143–149

    CrossRef  Google Scholar 

  • Kumar G, Sivagurunathan P, Kim SH, Bakonyi P, Lin CY (2015) Modeling and optimization of biohydrogen production from de-oiled Jatropha using the response surface method. Arab J Sci Eng 40:15–22

    CrossRef  Google Scholar 

  • Lamaison FC (2009) Aplicação da água residuária do processamento da mandioca como substrato para a produção de hidrogênio por processo fermentativo. 83 f. Dissertação (Mestrado em Engenharia Hidráulica e Saneamento) – Universidade Federal de Santa Catarina, Florianópolis-SC

    Google Scholar 

  • Lamaison FC, Reginatto V, Antônio R (2015) Efeito de diferentes pré-tratamentos de cultura mista para o enriquecimento em bactérias produtoras de hidrogênio. XX Congresso Brasileiro de Engenharia Química 1(2):717–724

    Google Scholar 

  • Lay C-H, Sem B, Huangm S-C, Chen C-C, Lin C-Y (2013) Sustainable bioenergy production from tofu-processing wastewater by anaerobic hydrogen fermentation for onsite energy recovery. Renew Energy 58:60–67

    CrossRef  Google Scholar 

  • Lazaro CZ, Perna V, Etchebehere C, Varesche MBA (2014) Sugarcane vinasse as substrate for fermentative hydrogen production: The effects of temperature and substrate concentration. Int J Hydrog Energy 39:6407–6418

    CrossRef  Google Scholar 

  • Leitão RC, Claudino RL, De Brito CRF, Alexandre LC, Cassales AR, Pinto GAS, Santaella ST (2011) Produção de Biogás a partir do Bagaço do Caju. Fortaleza (Boletim de pesquisa e desenvolvimento/Embrapa Agroindústria Tropical, ISSN 1679-6543; 51), 43p

    Google Scholar 

  • Lin C-Y, Lay C-H, Sen B, Chu C-Y, Kumar G, Chen C-C, Chang J-S (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632–15642

    CrossRef  Google Scholar 

  • Liu CF, Yuan XZ, Zeng GM, Li WW, Li J (2008) Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol 99(4):882–888

    CrossRef  Google Scholar 

  • Loyanh N, Warren J, Sistani K (2010) Determination of ammonia and greenhouse gas emissions from land application of swine slurry: a comparison of three application methods. Bioresour Technol 101(6):1662–1667

    CrossRef  Google Scholar 

  • Luning L, Van Zundet EHM, Brinkmann AJF (2003) Comparison of dry and wet digestion for solid waste. Water Sci Technol 48(4):15–20

    CrossRef  Google Scholar 

  • Ma J, Duong TH, Smits M, Verstraete W, Carballa M (2011) Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol 102:592–599

    CrossRef  Google Scholar 

  • Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sustain Energy Rev 15:3141–3155

    CrossRef  Google Scholar 

  • Mahdy A, Mendez L, Ballesteros M, Gonzalez-Fernandez C (2015) Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 158:35–41. https://doi.org/10.1016/j.fuel.2015.04.052

    CrossRef  Google Scholar 

  • MAPA- Ministério da Agricultura, Agropecuária e Abastecimento- Produção brasileira de cana-de-açúcar, açúcar e etanol, Publicado em: 02/2017 (2017)

    Google Scholar 

  • Marañón E, Castrillon L, Quiroga G, Fernandez-Nava Y, Gomez L, Garcia MM (2012) Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag 32(10):1821–1825

    CrossRef  Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2013) Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel 111:872–879

    CrossRef  Google Scholar 

  • Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427

    CrossRef  Google Scholar 

  • Mckennedy J, Sherlock O (2015) Anaerobic digestion of marine macroalgae: a review. Renew Sustain Energy Rev 52:1781–1790. https://doi.org/10.1016/j.rser.2015.07.101

    CrossRef  Google Scholar 

  • Mendez L, Mahdy A, Timmers RA, Ballesteros M, Gonzalez-Fernandez C (2013) Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour Technol 149:136–141. https://doi.org/10.1016/j.biortech.2013.08.136

    CrossRef  Google Scholar 

  • Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sustain Energy Rev 44:888–903

    CrossRef  Google Scholar 

  • Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56. https://doi.org/10.1016/j.jbiotec.2010.07.030

    CrossRef  Google Scholar 

  • Mustafa AM, Poulsen TG, Xia Y, Sheng K (2017) Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. Bioresour Technol 224:174–182

    CrossRef  Google Scholar 

  • Nayal FS, Mammadov A, Ciliz N (2016) Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion. J Environ Manag 184(2):389–399

    CrossRef  Google Scholar 

  • Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99(17):7995–8001

    CrossRef  Google Scholar 

  • Obruca S, Benesova P, Petrik S, Oborna J, Prikryl R, Marova I (2014) Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem 49:1409–1414. https://doi.org/10.1016/j.procbio.2014.05.013

    CrossRef  Google Scholar 

  • Oliveira Netto AP (2011) Reator anaeróbio-aeróbio de leito fixo em escala piloto, com recirculação da fase líquida, aplicado ao tratamento de esgoto sanitário. Tese (Doutorado em Engenharia Hidráulica e Saneamento) –Universidade de São Paulo, São Carlos-SP

    Google Scholar 

  • Pages-Diaz J, Pereda-Reyes I, Taherzadeh MJ, Sarvari-Horvath I, Lundin M (2014) Anaerobic co-digestion of solid slaughterhouse wastes with agroresidues: synergistic and antagonistic interactions determined in batch digestion assays. Chem Eng J 245:89–98

    CrossRef  Google Scholar 

  • Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2010) Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenerg 34(8):1117–1124

    CrossRef  Google Scholar 

  • Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2012) Enhanced biomethanation in co-digestion of Cassava pulp and pig manure using a two-phase anaerobic system. J Sustain Energy Environ 3:73–79

    Google Scholar 

  • Passos F, Ferrer I (2014) Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ Sci Technol 48(12):7171–7178. https://doi.org/10.1021/es500982v

    CrossRef  Google Scholar 

  • Passos F, Ferrer I (2015) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373. https://doi.org/10.1016/j.watres.2014.10.015

    CrossRef  Google Scholar 

  • Passos F, Hernandez-Marine M, Garcia J, Ferrer I (2014a) Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res 49:351–359

    CrossRef  Google Scholar 

  • Passos F, Uggetti E, Carrere H, Ferrer I (2014b) Pretreatment of microalgae to improve biogas production: a review. Biores Technol 172:403–412. https://doi.org/10.1016/j.biortech.2014.08.114

    CrossRef  Google Scholar 

  • Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672. https://doi.org/10.1016/j.cej.2015.05.065

    CrossRef  Google Scholar 

  • Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205

    CrossRef  Google Scholar 

  • Peixoto G, Pantoja Filho JLR, Agnelli JAB, Barboza M, Zaiat M (2012) Hydrogen and methane production, energy recovery, and organic matter removal from effluents in a two-stage fermentative process. Appl Biochem Biotechnol 3:651–671

    CrossRef  Google Scholar 

  • Pereira RF, Cardoso EJBN, Oliveira FC, Estrada-Bonilla GA, Cerri CEP (2018) A novel way os assessing C dynamics during urban organic waste composting and greenhouse gas emissions in tropical region. Bioresour Technol 3:35–42

    CrossRef  Google Scholar 

  • Pesquisa FAPESP (2015) Tecnologia Engenharia Química. Vinhaça para gerar energia, Revista Pesquisa FAPESP 238:68–71

    Google Scholar 

  • Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian R (2014) Food-waste-to-energy conversion technologies: current status and future directions. Waste Manag https://doi.org/10.1016/j.wasman.2014.12.004

  • Phowan P, Danvirutai P (2014) Hydrogen production from cassava pulp hydrolysate by mixed seed cultures: effects of initial pH, substrate and biomass concentrations. Biomass Bioenergy 64:1–10

    CrossRef  Google Scholar 

  • Piccinini S, Animali CRP, Emilia R (2004) Biogas: produzione e prospettive in Italia. Convegno Nazionale sulla Bioenergia, Roma, p 12

    Google Scholar 

  • Prajapati SK, Kumar P, Malik A, Vijay VK (2014) Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process. Bioresour Technol 158:174–180

    CrossRef  Google Scholar 

  • PROBIOGÁS, Projeto Brasil-Alemanha de Fomento ao Aproveitamento Energético do Biogás no Brasil (2015) Tecnologias de digestão anaeróbia com relevância para o Brasil: substratos, digestores e uso de biogás. Organizadores: Ministério das Cidades, Deutsche Gesellschaftfür Internationale Zusammenarbeit GmbH [GIZ]. Brasília, DF: Ministério das Cidades, 83p

    Google Scholar 

  • Girotto F, Peng W, Rafieenia, R, Cossu R (2016) Effect of aeration applied during different phases of anaerobic digestion. Waste Biomass Valorization 1–14

    Google Scholar 

  • Rafieenia R, Girotto F, Peng W, Cossu R, Pivato A, Raga R, Lavagnolo MC (2017) Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag 59:194–199

    CrossRef  Google Scholar 

  • Raposo F, Fernandez-Cegrí V, De La Rubia MA, Borja R, Beline F, Cavinato C, Demirer G, Fernandez B, Fernandez-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Mendez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinckm I, De Wildep V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098

    CrossRef  Google Scholar 

  • Reis CM, Silva EL (2011) Effect of upflow velocity and hydraulic retention time in anaerobicfluidized-bed reactors used for hydrogen production. Chem Eng J 172(1):28–36

    CrossRef  Google Scholar 

  • Reis CM, Carosia MF, Sakamoto IK, Varesche MBA, Silva EL (2015) Evaluation of hydrogen and methane production from sugarcane vinasse in an anaerobic fluidized bed reactor. Int J Hydrog Energy 40(27):8498–8509

    CrossRef  Google Scholar 

  • Riaño B, Molinuevo B, García-González MC (2011) Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater. Bioresour Technol 102:4131–4136

    CrossRef  Google Scholar 

  • Rojas MDPA (2010) Influência da relação C/N na produção de hidrogênio em reator aneróbio de leito fixo. 67 f. Dissertação (Mestrado em Engenharia Hidráulica e Saneamento) – Universidade de São Paulo, São Carlos-SP

    Google Scholar 

  • Rosa PRF, Gomes BC, Varesche MBA, Silva EL (2016) Characterization and antimicrobial activity of lactic acid bacteria from fermentative bioreactors during hydrogen production using cassava processing wastewater. Chem Eng J 284:1–9

    CrossRef  Google Scholar 

  • Rouches E, Zhou S, Steyer JP, Carrere H (2016) White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Process Biochem 51:1784–1792

    CrossRef  Google Scholar 

  • Rozzi A, Remigi E (2004) Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review. Rev Environ Sci Biotechnol 3:93–115

    CrossRef  Google Scholar 

  • Saleh MM, Mahmood UF (2004) Anaerobic digestion technology for industrial wastewater treatment. In: Proceedings of the eighth international water technology conference, IWTC, Alexandria, Egypt, pp 26–28

    Google Scholar 

  • Sambusiti C, Belluci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sustain Energy Rev 44:20–36. https://doi.org/10.1016/j.rser.2014.12.013

    CrossRef  Google Scholar 

  • Santana Junior AE (2013) Produção de metano a partir de vinhaça e melaço em reatores UASB termofílicos, em dois estágios. 84f Dissertação (Mestrado em Microbiologia Agropecuária). Faculdade de Ciências Agrárias e Veterinárias – UNESP, Campus de Jaboticabal-SP

    Google Scholar 

  • Santos ELB, Nardi Junior G (2013) Produção de biogás a partir de dejetos de origem animal. Tekhne e Logos 4(2):80–90

    Google Scholar 

  • Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL (2014) Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. Bioresour Technol 159:55–63

    CrossRef  Google Scholar 

  • Saratale RG, Kumar G, Banu R, Xia A, Periyasamy S, Saratale GD (2018) A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour Technol 262:319–332

    CrossRef  Google Scholar 

  • Sattar A, Arslan C, Ji C, Sattar S, Umair M, Sattar S, Bakht MZ (2016) Quantification of temperature effect on batch production of bio-hydrogen from rice crop wastes in an anaerobic bio reactor. Int J Hydrog Energy 41(26):11050–11061

    CrossRef  Google Scholar 

  • Schievano A, Tenca A, Scaglia B, Merlino G, Rizzi A, Daffonchio D, Adani F (2012) Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environ Sci Technol 46(15):8502–8510

    CrossRef  Google Scholar 

  • Schwede S, Rehman Z-U, Gerber M, Theiss C, Span R (2013) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour Technol 143:505–511. https://doi.org/10.1016/j.biortech.2013.06.043

    CrossRef  Google Scholar 

  • Searmsirimongkol P, Rangsunvigt P, Leethochavalit M, Chadej S (2011) Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using anaerobic sequencing batch reactor. Int J Hydrog Energy 36:12810–12821

    CrossRef  Google Scholar 

  • Seghezzo L, Zeeman G, Van Lier JB, Hamelers HVM, Lettinga G (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65(3):175–190

    CrossRef  Google Scholar 

  • Sforza E, Barbera E, Girotto F, Cossu R, Bertucco, A (2017) Anaerobic digestion of lipid-extracted microalgae: enhancing nutrient recovery towards a closed loop recycling. Biochem Eng J 121(Supplement C):139–146. https://doi.org/10.1016/j.bej.2017.02.004

  • Shahriari H, Warith M, Hamoda M, Kennedy K (2013) Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment. J Environ Manag 125:74–84

    CrossRef  Google Scholar 

  • Shida GM, Amorim ELC, Silva EL (2008) Hydrogen and volatile fatty acids production in anaerobic fluidized bed reactor using heat-treated sludge anaerobic. In: 17th Proceedings Brisbane World hydrogen energy conference (WHEC2008), Brisbane

    Google Scholar 

  • Silva JL (2009) Desempenho do reator anaeróbio horizontal com chicanas no tratamento da manipueira em fases separadas e estabilização do pH com conchas de sururu. 100 f. Dissertação (Mestrado em Recursos Hídricos e Saneamento). Universidade Federal de Alagoas, Centro de Tecnologia, Maceió-AL

    Google Scholar 

  • Silva CEF, Abud AKS (2016) Anaerobic biodigestion of sugarcane bagasse under mesophilic conditions using manure as inoculum. Ambiente Agua 11(4):763–777

    CrossRef  Google Scholar 

  • Silva CO, Cezar VRS, Santos MB, Santos AS (2013) Biodigestão anaeróbia com substrato formado pela combinação de esterco ovinocaprino, manipueira e biofertilizante. Revista Ibero-Americana de Ciências Ambientais, Aquidabã 4(1):88–103. https://doi.org/10.6008/ESS2179-6858.2013.001.0007

    CrossRef  Google Scholar 

  • Sivagurunathan P, Kumar G, Bakonyi P, Kim S-H, Kobayashi T, Xu KQ, Lakner G, Tóth G, Nemestóthy N, Belafi-Bako K (2016) A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int J Hydrog Energy 41(6):3820–3836

    CrossRef  Google Scholar 

  • Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7(3):609–616

    CrossRef  Google Scholar 

  • Speece RE (1983) Anaerobic biotechnology for industrial wastewaters. Environ Sci Technol 17(9):416A–427A

    CrossRef  Google Scholar 

  • Sridar V (1998) Microwave radiation as catalyst for chemical reactions. Curr Sci 74:446–450

    Google Scholar 

  • Sunyoto NMS, Zhu M, Zhang Z, Zhang D (2017) Effect of biochar addition and initial pH on hydrogen production from the first phase of two-phase anaerobic digestion of carbohydrates food waste. In: Energy procedia. The 8th international conference on applied energy – ICAE2016, vol 105, pp 379–384

    Google Scholar 

  • Suzuki ABP, Feiden A, Fernandes DM, Martins GI, Faria AP (2012) Utilização de manipueira juntamente com sólidos da cama de aviário em biodigestores para geração de biogás. Rev Ambiência 8(3):809–819

    CrossRef  Google Scholar 

  • Tavares AC (2008) Modelagem matemática da degradação da glicose, com produção de hidrogênio, em um reator anaeróbio de leito fixo. 2008. 68 f. Dissertação (Mestrado em Engenharia Hidráulica e Saneamento), Universidade de São Paulo, São Carlos

    Google Scholar 

  • Tedesco S, Barroso TM, Olabi AG (2014) A Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas. Renew Energy 62:527–534

    CrossRef  Google Scholar 

  • Telles SLN, Filho ENS, Amorim ELC (2018) Produção de hidrogênio a partir da vinhaça de cana-de-açúcar em reator anaeróbio em batelada. Rev DAE 66(211):74–88. https://doi.org/10.4322/dae.2018.015

    CrossRef  Google Scholar 

  • Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102:8582–8588

    CrossRef  Google Scholar 

  • Turner J, Sverdrup G, Mann MK, Maness P-C, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Hydrog Energy 32:379–407

    CrossRef  Google Scholar 

  • USDA-NRCS - United States Department of Agriculture Natural Resources Conservation Service (USDA-NRCS), (1995). Animal Manure Management, RCA Issue Briefs No. 7. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/null/?cid=nrcs143_014211

  • Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 13:1000–1013

    CrossRef  Google Scholar 

  • Vasmara C, Marchetti R (2017) Initial pH influences in-batch hydrogen production from scotta permeate. Int J Hydrog Energy 42:14400–14408

    CrossRef  Google Scholar 

  • Vismara R, Malpei F, Centemero M (2008) Biogas da rifiuti solidi urbani. Dario Flaccovio Editore, 392 p

    Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    CrossRef  Google Scholar 

  • Wang W, Xie L, Chen J, Luo G, Zhou Q (2013) Enhanced fermentative hydrogen production from cassava stillage by co-digestion: the effects of different co-substrates. Int J Hydrog Energy 38:6980–6988

    CrossRef  Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones L (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    CrossRef  Google Scholar 

  • Wong Y, Teng Y, Ong S, Norhashimah M, Rafatullah M, Leong J (2014) Methane gas production from palm oil wastewater - An anaerobic methanogenic degradation process in continuous stirrer suspended closed anaerobic reactor. J Taiwan Ins Chem Eng 45:896–900

    CrossRef  Google Scholar 

  • Wosiacki G, Cereda MP (2002) Valorização de resíduos do processamento da mandioca. Publ UEPG. Exact Soil Sci Agrarian S Eng 8:27–43

    Google Scholar 

  • Yang B, Wyamn CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining 2:26–40

    CrossRef  Google Scholar 

  • Yen H, Brune D (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98(1):130–134. https://doi.org/10.1016/j.biortech.2005.11.010

    CrossRef  Google Scholar 

  • Yenigun O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48(5–6):901–911. https://doi.org/10.1016/j.procbio.2013.04.012

    CrossRef  Google Scholar 

  • Zaiat M, Vieira, LGT, Foresti E (1996) Variações espaciais e temporais do monitoramento de parâmetros de desempenho em reator anaeróbio de lodo imobilizado de fluxo horizontal (HAIS) tratando substrato sintético. Anais da 51ª Conferência de Resíduos Industriais de Purdue, Ann Arbor Press, W. Lafayette, IN, EUA, no prelo

    Google Scholar 

  • Zanella L, Silva GHR, Nour EAA (2003) Taxa de carregamento orgânico: Influência no desempenho de reatores compartimentados. 23° Congresso Brasileiro de Engenharia Sanitária e Ambiental, Campo Grande/MS

    Google Scholar 

  • Zhang R, El-Mashad HM, Hartman K, Wang F, Liu G, Choate C, Gamble P (2007) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98(4):929–935

    CrossRef  Google Scholar 

  • Zhang C, Xiao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176

    CrossRef  Google Scholar 

  • Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of foodwaste for biogasproduction. Renew Sustain Energy Rev 38:383–392

    CrossRef  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    CrossRef  Google Scholar 

Download references

Acknowledgements

C. E. De Farias Silva would like to thank the CNPq (Brazilian National Council for Scientific and Technological Development) for the Postdoctoral Fellowship and financial support. Project numbers: 167490/2017-6 and 407274/2018-9. C. M. Carvalho also thank the fellowship granted by PNPD/PPGQB/CAPES (Selection 2017.2). The institutional and financial support of CNPq, CAPES, FINEP, UFAL and FAPEAL were of great importance to the research development discussed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. De Farias Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

De Farias Silva, C.E. et al. (2019). Anaerobic Digestion: Biogas Production from Agro-industrial Wastewater, Food Waste, and Biomass. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)