Skip to main content

Current and Future Perspectives on Lipid-Based Biofuels

  • 927 Accesses

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

Declining fossil fuel resources, increasing energy security concern and environmental issues have motivated researchers globally to find out alternate sustainable fuel to fulfill the future energy demand. In the last few years lipid-based fuel, also known as biodiesel, is recognized as a suitable energy source against fossil-based fuels as it is renewable, biodegradable, nontoxic, sulfur free and eco-friendly. Biodiesel produced from lipid sources are similar to conventional diesel fuel. Nonetheless these significant advantages do not serve in commercializing biodiesel as a substitute for petrodiesel. The bottlenecks also include high cost of feedstock, i.e., edible oils, other unit production cost such as energy consumption, final product purification, and waste water treatment. Reduction in overall production cost can be achieved by selecting cheap sources like nonedible oils, animal fats, and waste cooking oil had been considered in recent studies. This chapter throws limelight on the necessity of biodiesel, current methods and technologies of biodiesel production from available feedstock, their advantages and disadvantages and technical barriers to commercialization of biodiesel. In addition, we attempted to address on the possible utilization of other lipid sources like waste sludge, microalgae, bacteria, fungi, yeast and insects, key barriers to commercial production from the mentioned sources and future perspective of biodiesel production. Possibility of complete replacement of fossil fuel is being emphasized worldwide and also for utilizing alternate low cost feedstocks and biocatalysts, developing economically better technology, application of genetic engineering, implementing new laws and government policies and improving public awareness.

Keywords

  • Biodiesel
  • Lipid
  • Methyl acetate
  • Microalgae
  • Transesterification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_15
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3

References

  • Abdul Razack S, Duraiarasan S (2016) Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Manag 47:98–104

    CrossRef  Google Scholar 

  • Abdul Razack S, Duraiarasan S, Santhalin Shellomith AS, Muralikrishnan K (2015) Statistical optimization of harvesting Chlorella vulgaris using a novel bio-source, Strychnos potatorum. Biotechnol Rep 7:150–156

    CrossRef  Google Scholar 

  • Abdul Razack S, Duraiarasan S, Mani V (2016) Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production. Biotechnol Rep 11:70–76

    CrossRef  Google Scholar 

  • Adewale P, Dumont M, Ngadi M (2016) Enzyme-catalyzed synthesis and kinetics of ultrasonic assisted methanolysis of waste lard for biodiesel production. Chem Eng J 284:158–165

    CrossRef  Google Scholar 

  • Agrawal OP, Agrawal S (2012) An overview of new drug delivery system: microemulsion. AJPST 2(1):5–12

    Google Scholar 

  • Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593

    CrossRef  Google Scholar 

  • Akhihiero ET, Oghenejoboh KM, Umukoro PO (2013) Effects of process variables on transesterification reaction of Jatropha curcas seed oil for the production of biodiesel. Int J Emerg Technol Adv Eng 3(6):388–393

    Google Scholar 

  • Alptekin E, Canakci M, Sanli H (2012) Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel 95:214–220

    CrossRef  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett/Lipid 99:239–246

    CrossRef  Google Scholar 

  • Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sustain Energy Rev 90:356–369

    CrossRef  Google Scholar 

  • Anuar MR, Abdullah AZ (2016) Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Renew Sustain Energy Rev 58:208–223

    CrossRef  Google Scholar 

  • Apostolakou AA, Kookos IK, Marazioti C, Angelopoulos KC (2009) Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Process Technol 90:1023–1031

    CrossRef  Google Scholar 

  • Arumugam A, Ponnusami V (2017) Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon 3(12):1–18

    CrossRef  Google Scholar 

  • Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu SS, Sarris D, Philippoussis A, Papanikolaou S (2017) Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 124:336–367

    CrossRef  Google Scholar 

  • Azocar L, Ciudad G, Heipieper HJ, Muñoz R, Navia R (2011) Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value. J Biosci Bioeng 112(6):583–589

    CrossRef  Google Scholar 

  • Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK (2010) The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour Technol 102(3):3512–3520

    CrossRef  Google Scholar 

  • Balat M, Balat H (2010) Progress in biodiesel processing. Appl Energy 87:1815–1835

    CrossRef  Google Scholar 

  • Bisen PS, Sanodiya BS, Thakur GS, Baghel RK, Prasad GBKS (2010) Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol Lett 32:1019–1030

    CrossRef  Google Scholar 

  • Bobade SN, Khyade VB (2012) Detail study on the properties of Pongamia Pinnata (Karanja) for the production of biofuel. Res J Chem Sci 2(7):16–20

    Google Scholar 

  • Brask J, Damstrup ML, Nielson PM, Holm HC, Maes J, Greyt WD (2011) Combining enzymatic esterification with conventional alkaline transesterification in an integrated biodiesel process. Appl Biochem Biotechnol 163(7):918–927

    CrossRef  Google Scholar 

  • Brunet R, Carrasco D, Muñoz E, Guillén-Gosálbez G, Katakis I, Jiménez L (2012) Economic and environmental evaluation of microalgae biodiesel production using process simulation tools. Comput Aided Chem Eng 30:547–551

    CrossRef  Google Scholar 

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441

    CrossRef  Google Scholar 

  • Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436

    CrossRef  Google Scholar 

  • Canoira L, Alcantara R, Garcia-Martinez J, Carrasco J (2006) Biodiesel from Jatropha oil wax: transesterification with methanol and properties as a fuel. Biomass Bioenergy 30:76–81

    CrossRef  Google Scholar 

  • Cea M, Sangaletti-Gerhard N, Acuña P, Fuentes I, Jorquera M, Godoy K, Osses F, Navia R (2015) Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechnol Rep 8:116–123

    CrossRef  Google Scholar 

  • Cernat A, Pana C, Negurescu N, Lazaroiu G, Nutu C (2015). Aspects of the animal fat use at the diesel engine fuelling. In: 50th international universities power engineering conference (UPEC). https://doi.org/10.1109/upec.2015.7339917

  • Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica, Lipase for Transesterification. J Biosci Bioeng 95(5):466–469

    CrossRef  Google Scholar 

  • Chen KS, Lin YC, Hsu KH, Wang HK (2012) Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 38:151–156

    CrossRef  Google Scholar 

  • da Silva C, Vladimir Oliveira J (2014) Biodiesel production through Non-catalytic supercritical Transesterification: current State and perspectives. Braz J Chem Eng 31(2):271–285

    CrossRef  Google Scholar 

  • Dantas Neto AA, Fernandes MR, Barros Neto EL, Castro Dantas TN, Moura MCPA (2011) Alternative fuels composed by blends of nonionic surfactant with diesel and water: engine performance and emissions. Braz J Chem Eng 28(3):521–531

    CrossRef  Google Scholar 

  • Demirbas A (2011) Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Appl Energy 88:3541–3547

    CrossRef  Google Scholar 

  • Deshpande A, Anitescu G, Rice PA, Tavlarides LL (2010) Supercritical biodiesel production and power cogeneration: technical and economic feasibilities. Bioresour Technol 101:1834–1843

    CrossRef  Google Scholar 

  • Devanesan MG, Viruthagiri T, Sugumar N (2007) Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. Afr J Biotechnol 6(21):2497–2501

    CrossRef  Google Scholar 

  • Do LD, Singh V, Chen L, Kibbey TCG, Gollahalli SR, Sabatini DA (2011) Algae, canola, or palm oils—diesel microemulsion fuels: phase behaviors, viscosity, and combustion properties. Int J Green Energy 8(7):748–767

    CrossRef  Google Scholar 

  • Dong T, Knoshaug EP, Pienkos PT, Laurens LML (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895

    CrossRef  Google Scholar 

  • Dorado MP, Ballesteros E, Mittelbach M, Lopez FJ (2004) Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. Energy Fuels 18:1457–1462

    CrossRef  Google Scholar 

  • Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase catalysed transesterification of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 3:125–129

    CrossRef  Google Scholar 

  • Duraiarasan S, Abdul Razack S, Manickam A, Munusamy A, Basha Syed M, Ali MY, Ahmed GM, Mohiuddin MS (2016) Direct conversion of lipids from marine microalga C. salina to biodiesel with immobilised enzymes using magnetic nanoparticle. J Environ Chem Eng 4:1393–1398

    CrossRef  Google Scholar 

  • Đurišić-Mladenović N, Kiss F, Škrbić B, Tomić M, Mićić R, Predojević Z (2018) Current state of the biodiesel production and the indigenous feedstock potential in Serbia. Renew Sustain Energy Rev 81:280–291

    CrossRef  Google Scholar 

  • Dwivedi G, Sharma MP (2013) Cold flow behaviour of biodiesel-a review. Int J Renew Energy Res 3(4):827–836

    Google Scholar 

  • Dwivedi G, Sharma MP (2014) Potential and limitation of straight vegetable oils as engine fuel – an indian perspective. Renew Sustain Energy Rev 33:316–322

    CrossRef  Google Scholar 

  • Fadhil AB, Aziz AM, Al-Tamer MH (2016) Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Convers Manag 108:255–265

    CrossRef  Google Scholar 

  • Finke MD (2002) Complete nutritional composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21:269–285

    CrossRef  Google Scholar 

  • Fu B, Vasudevan PT (2010) Effect of solvent-co-solvent mixtures on lipase-catalyzed transesterification of canola oil. Energy Fuels 24:4646–4651

    CrossRef  Google Scholar 

  • Gashaw A, Getachew T, Teshita A (2015) A review on biodiesel production as alternative fuel. J For Prod Ind 4(2):80–85

    Google Scholar 

  • Gebremariam SN, Marchetti JM (2017) Biodiesel production technologies: review. AIMS Energy 5(3):425–457

    CrossRef  Google Scholar 

  • Gebremariam SN, Marchetti JM (2018) Economics of biodiesel production: review. Energy Convers Manag 168:74–84

    CrossRef  Google Scholar 

  • Ghaly AE, Dave D, Brooks MS, Budge S (2010) Production of biodiesel by enzymatic transesterification: review. Am J Biochem Biotechnol 6(2):54–76

    CrossRef  Google Scholar 

  • Gharat N, Rathod VK (2013) Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrason Sonochem 20:900–905

    CrossRef  Google Scholar 

  • Glisic S, Skala D (2009) The problems in design and detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. J Supercrit Fluids 49:293–301

    CrossRef  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    CrossRef  Google Scholar 

  • Haas MJ, Mc Aloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678

    CrossRef  Google Scholar 

  • Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H (2017) A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sustain Energy Rev 72:445–464

    CrossRef  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang XW, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    CrossRef  Google Scholar 

  • Jagadale SS, Jugulkar LM (2012) Review of various reaction parameters and other factors affecting on production of chicken fat based biodiesel. Int J Mod Eng Res 2(2):407–411

    Google Scholar 

  • Jain S, Sharma MP (2010) Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. Bioresour Technol 101:7701–7706

    CrossRef  Google Scholar 

  • Jain S, Sharma MP, Rajvanshi S (2010) Acid base catalyzed transesterification kinetics of waste cooking oil. Fuel Process Technol 92:32–38

    CrossRef  Google Scholar 

  • Javaid H, Manzoor M, Qazi JI, Xiaochao X, Tabssum F (2017) Potential of oleaginous yeasts as economic feedstock for biodiesel production. Biologia (Pakistan) 63(2):217–234

    Google Scholar 

  • Jegannathan KR, Jun-Yee L, Chan ES, Ravindra P (2010) Production of biodiesel from palm oil using liquid core lipase encapsulated in k-carrageenan. Fuel 89:2272–2277

    CrossRef  Google Scholar 

  • Jegannathan KR, Eng-Seng C, Ravindra P (2011) Economic assessment of biodiesel production: comparison of alkali and biocatalyst processes. Renew Sustain Energy Rev 15:745–751

    CrossRef  Google Scholar 

  • Jeong GT, Yang HS, Park DH (2009) Optimization of transesterification of animal fat ester using response surface methodology. Bioresour Technol 100:25–30

    CrossRef  Google Scholar 

  • Karmee SK, Patria RD (2015) Lin CSK (2015) Techno-economic evaluation of biodiesel production from waste cooking oil-a case study of Hong Kong. Int J Mol Sci 16:4362–4371

    CrossRef  Google Scholar 

  • Kesić Ž, Lukić I, Zdujić M, Mojović I, Skala D (2016) Calcium oxide based catalysts for biodiesel production: a review. Chem Ind Chem Eng Q 22(4):391–408

    CrossRef  Google Scholar 

  • Kim SJ, Jung SM, Park YC, Park K (2007) Lipase catalysed transesterification of soybean oil using ethyl acetate, an alternative acyl acceptor. Biotechnol Bioprocess Eng 12:441–445

    CrossRef  Google Scholar 

  • Kirubakaran M, Arul Mozhi Selvan V (2018) A comprehensive review of low cost biodiesel production from waste chicken fat. Renew Sustain Energy Rev 82:390–401

    CrossRef  Google Scholar 

  • Kiss FE, Jovanović M, Bošković GC (2010) Economic and ecological aspects of biodiesel production over homogeneous and heterogeneous catalysts. Fuel Process Technol 91:1316–1320

    CrossRef  Google Scholar 

  • Kleinová A, Vailing I, Lábaj J, Mikulec J, Cvengroš J (2011) Vegetable oils and animal fats as alternative fuels for diesel engines with dual fuel operation. Fuel Process Technol 92:1980–1986

    CrossRef  Google Scholar 

  • Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign

    CrossRef  Google Scholar 

  • Kumar R, Tiwari P, Garg S (2013) Alkali transesterification of linseed oil for biodiesel production. Fuel 104:553–560

    CrossRef  Google Scholar 

  • Kusdiana D, Saka S (2001) Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80:693–698

    CrossRef  Google Scholar 

  • Lai JQ, Hu ZL, Wang PW, Yang Z (2012) Enzymatic production of microalgal biodiesel in ionic liquid [BMIm][PF6]. Fuel 95:329–333

    CrossRef  Google Scholar 

  • Leung D, Yang DP, Li ZX, Zhao ZM, Chen JP, Zhu LP (2012) Biodiesel from Zophobas morio larva oil: process optimization and FAME characterization. Ind Eng Chem Res 51:1041–1045

    CrossRef  Google Scholar 

  • Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011) From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90:1545–1548

    CrossRef  Google Scholar 

  • Li ZX, Yang DP, Huang ML, Hu XJ, Shen JG, Zhao ZM, Chen J (2012) Chrysomya megacephala (Fabricius) larvae: a new biodiesel resource. Appl Energy 94:349–354

    CrossRef  Google Scholar 

  • Li W, Li Q, Zheng L, Wang Y, Zhang J, Yu Z, Zhang Y (2015) Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour Technol 194:276–282

    CrossRef  Google Scholar 

  • Li-Beisson Y, Peltier G (2013) Third-generation biofuels: current and future research on microalgal lipid biotechnology. OCL 20(6). https://doi.org/10.1051/ocl/2013031

  • Linus NO, Belaboh SV, Edoye NR, Makama BY (2011) Synthesis, calorimetric and viscometric study of groundnut oil biodiesel and blends. Res J Chem Sci 3:49–57

    Google Scholar 

  • Liu Y (2011) The feasibility study of the new kind crude fat meterial of biodiesel from insects. 978-1-61284-752-8/11/$26.00 ©2011 IEEE

    Google Scholar 

  • Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780

    CrossRef  Google Scholar 

  • Liu GQ, Li D, Zhu CY, Peng K, Zhang HY (2010) Screening of oleaginous microorganisms for microbial lipids production and optimization. In: IEEE, International conference on bioinformatics and biomedical technology, pp 149–152

    Google Scholar 

  • Lubomir S, Jiri P, Karel K, Michaela B (2015) Biodiesel production from tannery fleshings: feedstock pre-treatment and process modelling. Fuel 148:16–24

    CrossRef  Google Scholar 

  • Manzano-Agugliaro F, Sanchez-Muros MJ, Barroso FG, Martínez-Sánchez A, Rojo S, Pérez-Ba˜nón C (2012) Insects for biodiesel production. Renew Sustain Energy Rev 16:3744–3753

    CrossRef  Google Scholar 

  • Mardhiah HH, Ong HC, Masjuki HH, Lim S, Lee HV (2017) A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew Sustain Energy Rev 67:1225–1236

    CrossRef  Google Scholar 

  • Mariod A, Klupsch S, Hussein IH, Ondruschka B (2006) Synthesis of alkyl esters from three unconventional Sudanese oils for their use as biodiesel. Energy Fuels 20:2249–2252

    CrossRef  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    CrossRef  Google Scholar 

  • Matsakas L, Giannakou M, Vörös D (2017) Effect of synthetic and natural media on lipid production from Fusarium oxysporum. Electron J Biotechnol 30:95–102

    CrossRef  Google Scholar 

  • Mbah CE, Elekima GOV (2007) Nutrient composition of some terrestrial insects in Ahmadu Bello University, Samaru, Nigeria. Sci World J 2(2):17–20

    Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    CrossRef  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    CrossRef  Google Scholar 

  • Mondal P, Basu M, Balasubramanian N (2008) Direct use of vegetable oil and animal fat as alternative fuel internal combustion engine. Biofuel Bioprod Biorefining 2:155–174

    CrossRef  Google Scholar 

  • Mulugetta Y (2009) Evaluating the economics of biodiesel in Africa. Renew Sustain Energy Rev 13:1592–1598

    CrossRef  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57–70

    CrossRef  Google Scholar 

  • Nair P, Singh B, Upadhyay SN, Sharma YC (2012) Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix mereterix as a heterogeneous catalyst. J Clean Prod 29–30:82–90

    CrossRef  Google Scholar 

  • Nan Y, Liu J, Lin R, Tavlarides LL (2015) Production of biodiesel from microalgae oil (Chlorella protothecoides) by non-catalytic transesterification in supercritical methanol and ethanol: process optimization. J Supercrit Fluids 97:174–182

    CrossRef  Google Scholar 

  • Naylor RL, Higgins MM (2018) The rise in global biodiesel production: implications for food security. Glob Food Secur 16:75–84

    CrossRef  Google Scholar 

  • NEN report, 09 Aug 2006

    Google Scholar 

  • Nguyen HC, Liang SH, Chen SS, Su CH, Lin JH, Chien CC (2018) Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: optimization by using response surface methodology. Energy Convers Manag 158:168–175

    CrossRef  Google Scholar 

  • Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539. https://doi.org/10.3389/fmicb.2016.01539

    CrossRef  Google Scholar 

  • Parawira W (2010) Biodiesel production from Jatropha curcas: a review. Sci Res Essays 5(14):1796–1808

    Google Scholar 

  • Patidar V, Chandra A, Singh M, Kale V (2014) Phase behaviour and physicochemical study of Karanj oil- ethanol microemulsion as alternative renewable biofuel. J Sci Ind Res 73:461–464

    Google Scholar 

  • Patil PD, Deng S (2009) Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88:1302–1306

    CrossRef  Google Scholar 

  • Peng XW, Chen HZ (2007) Microbial oil accumulation and cellulose secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239–242

    CrossRef  Google Scholar 

  • Popp J, Harangi-Rákos M, Gabnai Z, Balogh P, Antal G, Bai A (2016) Biofuels and their co-products as livestock feed: global economic and environmental implications. Molecules 21:285. https://doi.org/10.3390/molecules21030285

    CrossRef  Google Scholar 

  • Raita M, Laothanachareon T, Champreda V, Laosiripojana N (2011) Biocatalytic esterification of palm oil fatty acids for biodiesel production using glycine-based cross-linked protein coated microcrystalline lipase. J Mol Catal B Enzym 73:74–79

    CrossRef  Google Scholar 

  • Ramadhas AS, Jayaraj S, Muraleedharan C (2004) Use of vegetable oils as I.C. engine fuels-a review. Renew Energ 29:727–742

    CrossRef  Google Scholar 

  • Ramezani K, Rowshanzamir S, Eikani MH (2010) Castor oil transesterification reaction: a kinetic study and optimization of parameters. Energy 35:4142–4148

    CrossRef  Google Scholar 

  • Ramos-Elorduy J, Pino JM, Ladrón O, Lagunes J (1997) Edible insects of Oaxaca State, Mexico and their nutritive value. J Food Compos Anal 10:142–157

    CrossRef  Google Scholar 

  • Ramos-Elorduy J, Medeiros Costa Neto E, Ferreira Dos Santos J, Pino Moreno JM, Landero-Torres I, Ángeles Campos SC, Pérez ÁG (2006) Estudio comparativo del valor nutritivo de varios coleoptera comestibles de México y Pachymerus nucleorum (FABRICIUS, 1792) (BRUCHIDAE) de Brasil. INCI 31(7):512–516

    Google Scholar 

  • Rastogi RP, Pandey A, Larroche C, Madamwar D (2018) Algal green energy - R & D and technological perspectives for biodiesel production. Renew Sustain Energy Rev 82:2946–2969

    CrossRef  Google Scholar 

  • Rathore V, Tyagi S, Newalkar B, Badoni RP (2015) Jatropha and karanja oil derived DMC–biodiesel synthesis: a kinetics study. Fuel 140:597–608

    CrossRef  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2010) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    CrossRef  Google Scholar 

  • Refaat AA (2011) Biodiesel production using solid metal oxide catalysts. Int J Environ Sci Technol 8(1):203–221

    CrossRef  Google Scholar 

  • Rodrigues RC, Ayub MAZ (2011) Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem 46:682–688

    CrossRef  Google Scholar 

  • Rozina AS, Ahmad M, Zafar M, Ali N (2017) Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan. Renew Sustain Energy Rev 74:687–702

    CrossRef  Google Scholar 

  • Saifuddin N, Samiuddin A, Kumaran P (2015) A review on processing technology for biodiesel production. Trends Appl Sci Res 10(1):1–37

    CrossRef  Google Scholar 

  • Sakai T, Kawashima A, Koshikawa T (2009) Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Bioresour Technol 100:3268–3276

    CrossRef  Google Scholar 

  • Saluja RK, Kumar V, Sham R (2016) Stability of biodiesel – a review. Renew Sustain Energy Rev 62:866–881

    CrossRef  Google Scholar 

  • Sankumgon A, Assawadithalerd M, Phasukarratchai N, Chollacoop N, Tongcumpou C (2018) Properties and performance of microemulsion fuel: blending of jatropha oil, diesel, and ethanol- surfactant. Renew Energy Focus 24:28–32

    CrossRef  Google Scholar 

  • Sawangkeaw R, Ngamprasertsith S (2013) A review of lipid-based biomasses as feedstocks for biofuels production. Renew Sustain Energ Rev 25:97–108

    CrossRef  Google Scholar 

  • Shahabuddin M, Kalam MA, Masjuki HH, Bhuiya MMK, Mofijur M (2012) An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy 44(1):616–622

    CrossRef  Google Scholar 

  • Shahbazi MR, Khoshandam B, Nasiri M, Ghazvini M (2012) Biodiesel production via alkali-catalyzed transesterification of Malaysian RBD palm oil – characterization, kinetics model. J Taiwan Inst Chem Eng 43:504–510

    CrossRef  Google Scholar 

  • Sharif Hossain ABM, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254

    CrossRef  Google Scholar 

  • Shelly B, Sharma DK (2014) Effect of different catalysts on the cracking of Jatropha oil. J Anal Appl Pyrolysis 110:346–352

    CrossRef  Google Scholar 

  • Sirajunnisa AR, Surendhiran D (2016) Algae – a quintessential and positive resource of bioethanol production: a comprehensive review. Renew Sustain Energy Rev 66:248–267

    CrossRef  Google Scholar 

  • Skarlis S, Kondili E, Kaldellis J (2012) Small-scale biodiesel production economics: a case study focus on Crete Island. J Clean Prod 20:20–26

    CrossRef  Google Scholar 

  • Su EZ, Zhang MJ, Zhang JG, Gao JF, Wei DZ (2007) Lipase-catalyzed irreversible transesterification of vegetable oils for fatty acid methyl esters production with Dimethyl Carbonate as the acyl acceptor. Biochem Eng J 36:167–173

    CrossRef  Google Scholar 

  • Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287

    CrossRef  Google Scholar 

  • Suganya T, Renganathan S (2012) Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca. Bioresour Technol 107:319–326

    CrossRef  Google Scholar 

  • Surendhiran D, Vijay M (2012) Microalgal biodiesel - a comprehensive review on the potential and alternative biofuel. Res J Chem Sci 2(11):71–82

    Google Scholar 

  • Surendhiran D, Vijay M (2013a) Influence of bioflocculation parameters on harvesting Chlorella salina and its optimization using response surface methodology. J Environ Chem Eng 1:1051–1056

    CrossRef  Google Scholar 

  • Surendhiran D, Vijay M (2013b) Interesterification of marine microalga Chlorella salina oil with immobilized lipase as biocatalyst using methyl acetate as an acyl acceptor. Int J Environ Bioenergy 8(2):68–85

    Google Scholar 

  • Surendhiran D, Sirajunnisa AR, Vijay M (2015a) An alternative method for production of microalgal biodiesel using novel Bacillus lipase. 3 Biotech 5:715–725

    CrossRef  Google Scholar 

  • Surendhiran D, Vijay M, Sivaprakash B, Sirajunnisa A (2015b) Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production. 3 Biotech 5:663–669

    CrossRef  Google Scholar 

  • Surendra KC, Olivier R, Tomberlin JK, Jha R, Khanal SK (2016) Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew Energy 98:197–202

    CrossRef  Google Scholar 

  • Talebian-Kiakalaieh A, Amin NA, Zarei A, Noshadi I (2013) Transesterification of waste cooking oil by heteropolyacid (HPA) catalyst: optimization and kinetic model. Appl Energy 102:283–292

    CrossRef  Google Scholar 

  • Talha NS, Sulaiman S (2016) Overview of catalysts in biodiesel production. ARPN J Eng Appl Sci 11(1):439–448

    Google Scholar 

  • Thapa S, Indrawan N, Bhoi PR (2018) An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines. Environmental Technology & Innovation 9:210–219

    CrossRef  Google Scholar 

  • Usta N (2005) Use of tobacco seed oil methyl esters in turbocharged indirect injection diesel engine. Biomass Bioenergy 28:77–86

    CrossRef  Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    CrossRef  Google Scholar 

  • Verma P, Sharma MP (2016) Review of process parameters for biodiesel production from different feedstocks. Renew Sustain Energy Rev 62:1063–1071

    CrossRef  Google Scholar 

  • Wenying S, Jianxin L, Benqiao H, Feng Y, Zhenyu C, Kaiwei W, Ligang L, Xiaomin Q, Yu C (2013) Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Bioresour Technol 139:316–322

    CrossRef  Google Scholar 

  • World Energy 2017–2050: Annual Report, June 2017

    Google Scholar 

  • Xianhui Z, Lin Wei, Shouyun C, Yinbin H, Yong Y, James J (2015) Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst. Fuel Process Technol 139:117–126

    CrossRef  Google Scholar 

  • Xu Y, Du W, Zeng J, Liu D (2004) Conversion of soybean oil to biodiesel fuel using lipozyme TL IM in a solvent free medium. Biocatal Biotransformation 22:45–48

    CrossRef  Google Scholar 

  • Yahyaee R, Ghobadian B, Najafi G (2013) Waste fish oil biodiesel as a source of renewable fuel in Iran. Renew Sustain Energy Rev 17:312–319

    CrossRef  Google Scholar 

  • Yigezu ZD, Muthukumar K (2014) Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energ Convers Manag 84:326–333

    CrossRef  Google Scholar 

  • Yoshida A, Hama S, Tamadani N, Noda H, Fukuda H, Kondo A (2012) Continuous production of biodiesel using whole-cell biocatalysts: sequential conversion of an aqueous oil emulsion into anhydrous product. Biochem Eng J 68:7–11

    CrossRef  Google Scholar 

  • Yusuf NNAN, Kamarudin SK (2013) Techno-economic analysis of biodiesel production from Jatropha curcas via a supercritical methanol process. Energy Convers Manag 75:710–717

    CrossRef  Google Scholar 

  • Zhang L, Sheng B, Xin Z, Liu Q, Sun S (2010) Kinetics of transesterification of palm oil and dimethylcarbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresour Technol 101:8144–8150

    CrossRef  Google Scholar 

  • Zheng L, Hou Y, Li W, Yang S, Li Q, Yu Z (2012) Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 47:225–229

    CrossRef  Google Scholar 

  • Živkovic SB, Veljkovic MV, Bankovic-Ilic IB, Krstic IM, Konstantinovic SS, Ilic SB, Avramovic JM, Stamenkovic OS, Veljkovic VB (2017) Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renew Sustain Energy Rev 79:222–247

    CrossRef  Google Scholar 

  • http://www.fao.org/3/a-BT092e.pdf

  • www.biodieselmagazine.com

  • www.bis.gov.in

  • www.glycerintraders.com/ASTM%206751%20spec.pdf

  • www.indexbox.io

  • www.statista.com

  • www.ufop.de

Download references

Acknowledgements

We are thankful to the editor of this book Dr. Ali Asghar Rastegari for his invitation to contribute to this book. We also thank Dr. Ajar Nath Yadav for his comments on earlier versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duraiarasan Surendhiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sirajunnisa, A.R., Surendhiran, D., Baskar, T., Vijay, M., Vijayagopal, V., Thiruvengadam, S. (2019). Current and Future Perspectives on Lipid-Based Biofuels. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)