Skip to main content

Lignocellulosic Biomass for Bioethanol Production Through Microbes: Strategies to Improve Process Efficiency

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

Lignocellulosic biomass can be a potential source of bioethanol by a microorganism such as yeast and bacteria. Hydrolysis of cellulose resulted in reducing sugars and fermentation of sugar produces bioethanol. Fermentable sugar can be obtained by pretreatment of lignocellulosic biomass which involves physic-chemical techniques along with biological pretreatment. Many fungal organisms such as white fungus and enzymes obtained from them have been reported to carry out the pretreatment process. Several models have been proposed to validate the hydrolysis of cellulose and hemicellulose. Tools of metabolic engineering and genetic engineering are used for the modification of microorganism so that they can utilize the different forms of carbon and perform the fermentation process at a wide range of pH and temperature. Process optimization and kinetic studies of microorganism can help in enhancing the productivity of bioethanol. Monod model and its modifications are used to describe the growth kinetics whereas Leudeking–Piret model for product formation kinetics. Different kinds of unit operations as a tool of downstream processing can be coupled with fermenter to prevent the product toxicity and increase the yield of the ethanol. Thus fuelling the future, the engineered microorganism can be explored for the production of next-generation lignocellulosic bioethanol.

Keywords

  • Bioethanol
  • Lignocellulosic biomass
  • Metabolic engineering
  • Microorganisms
  • Pretreatment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_14
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6
Fig. 14.7
Fig. 14.8
Fig. 14.9

(Source Löbs et al. 2017)

Fig. 14.10
Fig. 14.11
Fig. 14.12
Fig. 14.13
Fig. 14.14

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    CrossRef  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    CrossRef  Google Scholar 

  • Ariyajaroenwong P, Laopaiboon P, Salakkam A, Srinophakun P, Laopaiboon L (2016) Kinetic models for batch and continuous ethanol fermentation from sweet sorghum juice by yeast immobilized on sweet sorghum stalks. J Taiwan Inst Chem Eng 66:210–216

    CrossRef  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27(6):833–848

    CrossRef  Google Scholar 

  • Barbosa CD, Lacerda IC, de Souza Oliveira E (2018) Potential evaluation of Saccharomyces cerevisiae strains from alcoholic fermentation of mango pulp. Afr J Biotechnol 17(28):880–884

    CrossRef  Google Scholar 

  • Behera S, Kar S, Mohanty RC, Ray RC (2010) Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices. Appl Energy 87(1):96–100

    Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101(13):4767–4774

    CrossRef  Google Scholar 

  • Brandenburg J, Poppele I, Blomqvist J, Puke M, Pickova J, Sandgren M, Rapoport A, Vedernikovs N, Passoth V (2018) Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction. Appl Microbiol Biotechnol 102(14):6269–6277

    CrossRef  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011

    Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Product Rep 28(12):1883–1896

    CrossRef  Google Scholar 

  • Cao X, Sun S, Sun R (2017) Application of biochar-based catalysts in biomass upgrading: a review. RSC Adv 7(77):48793–48805

    CrossRef  Google Scholar 

  • Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457

    CrossRef  Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FA, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, Solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    CrossRef  Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3(5):415–431

    Google Scholar 

  • Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35

    CrossRef  Google Scholar 

  • Chovau S, Gaykawad S, Straathof AJ, Van der Bruggen B (2011) Influence of fermentation by-products on the purification of ethanol from water using pervaporation. Bioresour Technol 102(2):1669–1674

    CrossRef  Google Scholar 

  • Conner AH (1984) Kinetic modeling of hardwood prehydrolysis. Part I. Xylan removal by water prehydrolysis. Wood Fiber Sci 16(2):268–277

    Google Scholar 

  • Demiray E, Karatay SE, Dönmez G (2018) Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Energy 159:988–994

    CrossRef  Google Scholar 

  • Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manag 49(1):125–130

    CrossRef  Google Scholar 

  • Doran PM (1995) Bioprocess engineering principles. Elsevier

    Google Scholar 

  • dos Santos Rocha MS, Pratto B, de Sousa Junior R, Almeida RM, da Cruz AJ (2017) A kinetic model for hydrothermal pretreatment of sugarcane straw. Bioresour Technol 228:176–185

    CrossRef  Google Scholar 

  • Ferreira J, Santos VA, Cruz CH (2018) Ethanol production by co-culture of Zymomonas mobilis and Pachysolen tannophilus using banana peels hydrolysate as substrate. Acta Scientiarum Technol 40:e35169

    CrossRef  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274

    CrossRef  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends in Biotech 24(12):549–556

    CrossRef  Google Scholar 

  • Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Tech 100(1):10–18

    CrossRef  Google Scholar 

  • Jansen ML, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJ, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17(5):1–20

    CrossRef  Google Scholar 

  • Jayed MH, Masjuki HH, Kalam MA, Mahlia TM, Husnawan M, Liaquat AM (2011) Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia. Renew Sustain Energy Rev 15(1):220–235

    CrossRef  Google Scholar 

  • Ji M, Miao Y, Chen JY, You Y, Liu F, Xu L (2016) Growth characteristics of freeze-tolerant baker’s yeast Saccharomyces cerevisiae AFY in aerobic batch culture. SpringerPlus 5(1):503

    CrossRef  Google Scholar 

  • Jin YS, Cate JH (2017) Metabolic engineering of yeast for lignocellulosic biofuel production. Curr Opin Chem Biol 41:99–106

    CrossRef  Google Scholar 

  • Kashid M, Ghosalkar A (2018) Evaluation of fermentation kinetics of xylose to ethanol fermentation in the presence of acetic acid by Pichia stipitis: modeling and experimental data comparison

    Google Scholar 

  • Ko JK, Lee SM (2018) Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production. Curr Opin Biotech 50:72–80

    CrossRef  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    CrossRef  Google Scholar 

  • Larsen J, Poulsen NN, Jeppesen MD, Mogensen KK (2018) Methods of processing lignocellulosic biomass using single-stage autohydrolysis pretreatment and enzymatic hydrolysis. U.S. Patent 9,920,345, issued March 20, 2018

    Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14(5):288

    CrossRef  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    CrossRef  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642

    CrossRef  Google Scholar 

  • Löbs AK, Schwartz C, Wheeldon I (2017) Genome and metabolic engineering in non-conventional yeasts: current advances and applications. Synth Syst Biotechnol 2(3):198–207

    CrossRef  Google Scholar 

  • Mans R, Daran JMG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56

    CrossRef  Google Scholar 

  • Mansouri A, Rihani R, Laoufi AN, Özkan M (2016) Production of bioethanol from a mixture of agricultural feedstocks: Biofuels characterization. Fuel 185:612–621

    CrossRef  Google Scholar 

  • Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609

    Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93

    CrossRef  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830

    CrossRef  Google Scholar 

  • Mustofa A (2018) Bioethanol production from banana stem by using simultaneous saccharification and fermentation (SSF). In: IOP conference series: materials science and engineering, vol 358, no 1, p 012004. IOP Publishing

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68

    CrossRef  Google Scholar 

  • Nwuche CO, Murata Y, Nweze JE, Ndubuisi IA, Ohmae H, Saito M, Ogbonna JC (2018) Bioethanol production under multiple stress condition by a new acid and temperature tolerant Saccharomyces cerevisiae strain LC 269108 isolated from rotten fruits. Process Biochem 67:105–112

    CrossRef  Google Scholar 

  • Patil V, Tran KQ, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195

    CrossRef  Google Scholar 

  • Pronyk C, Mazza G (2010) Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor. Ind Eng Chem Res 49(14):6367–6375

    CrossRef  Google Scholar 

  • Rao DG (2010) Introduction to biochemical engineering. Tata McGraw-Hill Education

    Google Scholar 

  • Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sustain Energ Rev 80:330–340

    CrossRef  Google Scholar 

  • Saeman JF (1945) Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–52

    CrossRef  Google Scholar 

  • Sewsynker-Sukai Y, Kana EG (2018) Simultaneous saccharification and bioethanol production from corn cobs: process optimization and kinetic studies. Bioresour Tech 262:32–41

    CrossRef  Google Scholar 

  • Sharma D, Sud A, Bansal S, Mahajan R, Sharma BM, Chauhan RS, Goel G (2018) Endocellulase production by Cotylidia pannosa and its application in saccharification of wheat bran to bioethanol. BioEnergy Res 11(1):219–227

    CrossRef  Google Scholar 

  • Shi J, Wu D, Zhang L, Simmons BA, Singh S, Yang B, Wyman CE (2017a) Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Biotechnol Bioeng 114(3):503–515

    CrossRef  Google Scholar 

  • Shi S, Guan W, Kang L, Lee YY (2017b) Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions. Ind Eng Chem Res 56(39):10990–10997

    CrossRef  Google Scholar 

  • Shuler ML, Kargi F (2002). Bioprocess engineering: basic concepts, 2nd edn. Upper Saddle

    Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Tech 199:76–82

    CrossRef  Google Scholar 

  • Srimachai T, Nuithitikul K, Sompong O, Kongjan P, Panpong K (2015) Optimization and kinetic modeling of ethanol production from oil palm frond juice in batch fermentation. Energy Procedia 79:111–118

    CrossRef  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Tech 83(1):1–11

    CrossRef  Google Scholar 

  • Tabata T, Yoshiba Y, Takashina T, Hieda K, Shimizu N (2017) Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 33(3):1–7

    CrossRef  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    CrossRef  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    CrossRef  Google Scholar 

  • Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489

    CrossRef  Google Scholar 

  • Tri CL, Kamei I (2018) The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. Int Biodeterior Biodegrad 133:86–92

    CrossRef  Google Scholar 

  • Veluchamy C, Kalamdhad AS, Gilroyed BH (2018) Advanced pretreatment strategies for bioenergy production from biomass and biowaste. In: Handbook of environmental materials management, pp 1–19

    Google Scholar 

  • Wang TY (2015) Engineering yeast for cellulosic ethanol production. Austin Chem Eng 2(2):1018

    Google Scholar 

  • Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM (2018) Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng

    Google Scholar 

  • Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313

    CrossRef  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin: Innov Sustain Econ 2(1):26–40

    CrossRef  Google Scholar 

  • Yang P, Zhang H, Cao L, Zheng Z, Mu D, Jiang S, Cheng J (2018) Combining sestc engineered A. niger with sestc engineered S. cerevisiae to produce rice straw ethanol via step-by-step and in situ saccharification and fermentation. 3 Biotech 8(1):12

    Google Scholar 

  • Yuan Z, Wen Y, Kapu NS (2018) Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresour Technol 247:242–249

    CrossRef  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501

    CrossRef  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101(13):4992–5002

    CrossRef  Google Scholar 

  • Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Singh, J., Baskar, C. (2019). Lignocellulosic Biomass for Bioethanol Production Through Microbes: Strategies to Improve Process Efficiency. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)