Skip to main content

Agricultural Waste: A Suitable Source for Biofuel Production

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

In current era, world is dependent on fossil fuels such as oil coal, natural gas, etc. Demand for the fossil fuels increase day by day due to increase in urbanization and industrialization. Excessive use of fossil fuels results in environment pollution especially in terms of generation of greenhouse gases. Natural sources of energy like wind, water, sun, biomass and geothermal heat can be utilized for fossil fuel production, and petroleum-based foods can be replaced by biomass-based fuels as bioethanol, biodiesel, biohydrogen, etc. Biodiesel production from food crops is no more an attractive option due to food versus fuel issue. Utilization of lignocellulosic waste from agriculture serves as better alternative looking to its lower cost, renewability and abundance. Lignocellulosic waste includes grasses, sawdust, wood chips, etc. Rice straw, wheat straw, corn straw and sugarcane bagasse are the major agricultural wastes. This chapter aims to present a brief overview of the available and accessible technologies for bioethanol production using these major lignocellulosic agro-waste.

Keywords

  • Agricultural waste
  • Biodiesel
  • Biofuels
  • Biological processes
  • Biomass
  • Renewable source

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_13
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  • Abbi M, Kuhad RC, Singh A (1996) Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. J Indus Microbiol 17:20–23

    CrossRef  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    CrossRef  Google Scholar 

  • Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and Protocols, vol 581. Humana Press, Springer Science + Business Media, LLC, pp 61–77

    CrossRef  Google Scholar 

  • Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    CrossRef  Google Scholar 

  • Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioprod Biorefining 4:77e93

    Google Scholar 

  • Belal EB (2013) Bioethanol production from rice straw residues. Braz J Microbiol 44(1):225–234

    CrossRef  Google Scholar 

  • Belkacemi K, Hamoudi S (2003) Enzymatic hydrolysis of dissolved corn stalk hemicelluloses: reaction kinetics and modeling. J Chem Technol Biotechnol 78:802–808

    CrossRef  Google Scholar 

  • Bilgen S, Kaygusuz K, Sari A (2004) Renewable energy for a clean and sustainable future. Energy Sources 26(12):1119–1129

    CrossRef  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioengin 49:568–577

    CrossRef  Google Scholar 

  • Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioengin 110(1):18–25

    CrossRef  Google Scholar 

  • Canilha L, Chandel AK, Suzane T, Antunes FAF, Luiz da Costa Freitas W, das Grac M (2012) Bioconversion of sugar cane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol:15 p. Article ID 989572

    Google Scholar 

  • Cardona CA, Quintero JA, Paz IC (2009) Production of bioethanol from sugarcane bagasse: status and perspectives. Biores Technol 101(13):4754–4766

    CrossRef  Google Scholar 

  • Champagne P (2007) Feasibility of producing bio-ethanol from waste residues: a Canadian perspective. Resour Cons Recycl 50(3):211–230

    CrossRef  Google Scholar 

  • Chen M, Zhao J, Xia L (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71:411–415

    CrossRef  Google Scholar 

  • Cho D-H, Shin S-J, Bae Y, Park C, Kim YH (2011) Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour Technol 102(6):4439–4443

    CrossRef  Google Scholar 

  • Chundawat SPS, Bals B, Campbell T (2013) Primer on ammonia fiber expansion pretreatment. In: Wyman C (ed) Aqueous pre-treatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, NY, USA, pp 169–195

    Google Scholar 

  • Dan M, Senila L, Roman M, Mihet M, Lazar MD (2015) From wood wastes to hydrogen e preparation and catalytic steam reforming of crude bio-ethanol obtained from fir wood. Renew Energy 74:27–36

    CrossRef  Google Scholar 

  • Das P, Ganesha A, Wangikar P (2004) Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenerg 27:445–457

    CrossRef  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266

    CrossRef  Google Scholar 

  • Eggman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Biores Technol 96:2019–2025

    CrossRef  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enz Microbial Technol 31:353–364

    CrossRef  Google Scholar 

  • Ferreira S, Durate AP, Ribeiro MHL, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Engin J 45:192–200

    CrossRef  Google Scholar 

  • Graham RL, Nelson R, Sheehan J, Perlack RD, Wright LL (2007) Current and potential US corn stover supplies. Agronomy J 99(1):1–11

    CrossRef  Google Scholar 

  • Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28:384–410

    CrossRef  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 103:11206–11210

    CrossRef  Google Scholar 

  • Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave assisted alkali pretreatment. Biochem Engin J 38:369–378

    CrossRef  Google Scholar 

  • Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugar cane bagasse hemicellulose at varying solids concentration. Ind Eng Chem Res 41(6):1454–1461

    CrossRef  Google Scholar 

  • Jorgensen H, Kutter JP, Olsson L (2003) Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Anal Biochem 317(1):85–93

    CrossRef  Google Scholar 

  • Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Biores Technol 98(10):2034–2042

    CrossRef  Google Scholar 

  • Karimi K, Kheradmandinia S, Taherzadeh MJ (2007) Conversion of rice straw to sugars by dilute acid hydrolysis. Biomass Bioenerg 30:247–253 2006

    CrossRef  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26(4):361–375

    CrossRef  Google Scholar 

  • Kitchaiya P, Intanakul P, Krairiksh M (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol 23(2):217–225

    CrossRef  Google Scholar 

  • Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    CrossRef  Google Scholar 

  • Li LJ, Wang Y, Zhang Q et al (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D: Earth Sci 51:403–414

    Google Scholar 

  • Lynd LR, van Zyl WH, Mcbride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    CrossRef  Google Scholar 

  • Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technol 40:426–432

    CrossRef  Google Scholar 

  • Moniruzzaman M (1995) Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis. World J Microbiol Biotechnol 11:646

    CrossRef  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005a) Optimization of pH controlled liquid hot water pretreatment of corn stover. Biores Technol 96:1986–1993

    CrossRef  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtazapple M (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686

    CrossRef  Google Scholar 

  • Mtui GYS (2009) Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol 8(8):1398–1415

    Google Scholar 

  • Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of the art and future trends of bioethanol production, dynamic biochemistry, process biotechnology and molecular biology. Global Science Books, pp 1–13

    Google Scholar 

  • Nguyen TAD, Kim KR, Han SJ, Cho HY, Kim JW, Park SM (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Biores Technol 101(19):7432–7438

    CrossRef  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    CrossRef  Google Scholar 

  • Pandey A (2009) Handbook of plant-based biofuels. CRC Press, New York

    Google Scholar 

  • Parikka M (2004) Global biomass fuel resources. Biomass Bioenergy 27:613–620

    CrossRef  Google Scholar 

  • Park YS, Kang SW, Lee JS, Hong SI, Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58:761–766

    CrossRef  Google Scholar 

  • Peiji G, Yinbo Q, Xin Z, Mingtian Z, Yongcheng D (1997) Screening microbial strain for improving the nutritional value of wheat and corn straws as animal feed. Enz Microbial Technol 20:581–584

    CrossRef  Google Scholar 

  • Rabinovich ML, Melnik MS, Boloboba AV (2002) Microbial cellulases (review). Appl Biochem and Microbiol 38(4):305–321

    CrossRef  Google Scholar 

  • Reijnders L (2008) Ethanol production from crop residues and soil organic carbon. Resour Conserv Recycl 52(4):653–658

    CrossRef  Google Scholar 

  • Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Indus Crops Prod 17(3):171–176

    CrossRef  Google Scholar 

  • Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453

    CrossRef  Google Scholar 

  • Sanchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol 99:5270–5295

    CrossRef  Google Scholar 

  • Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 Å resolution. J Mol Biol 308(2):295–310

    Google Scholar 

  • Schmetz E, Ackiewicz M, Tomlinson G, White C, Gray D (2014) Increasing security and reducing carbon emissions of the U.S. transportation sector: a transformational role for coal with biomass. National Energy Technology Laboratory

    Google Scholar 

  • Soccol RC, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski A (2011) Lignocellulosic bioethanol: current status and future perspectives. Biofuels. Academic Press, Amsterdam, pp 101–122

    CrossRef  Google Scholar 

  • Sun RC, Lawther JM, Banks WB (1995) Influence of alkaline pre-treatments on the cell-wall components of wheat-straw. Indus Crop Prod 4(2):127–145

    CrossRef  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic material for ethanol production: a review. Biores Technol 96:673–686

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresour 2(4):707–738

    Google Scholar 

  • Takahashi CM, Lima KGC, Takahashi DF, Alterthum F (2000) Fermentation of sugarcane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 16:829–834

    CrossRef  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bior Technol 101(13):4744–4753

    CrossRef  Google Scholar 

  • Ubersax JA, Platt DM (2010) Genetically modified microbes producing isoprenoids. WO Patent, 2010/141452 A1

    Google Scholar 

  • Wana C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Biores Technol 102:6254–6259

    CrossRef  Google Scholar 

  • Wanderley MCA, Martın C, Rocha GJM, Gouveia ER (2013) Increase in ethanol production from sugar cane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bior Technol 128:448–453

    CrossRef  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Biores Technol 96:2026–2032

    CrossRef  Google Scholar 

  • Xie GH, Wang XY, Ren LT (2010) China’s crop residues resources evaluation. Chin J Biotechnol 26:855–863

    Google Scholar 

  • Xu J, Takakuwa N, Nogawa M, Okada H, Morikawa Y (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49:18–724

    CrossRef  Google Scholar 

  • Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wanga W (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Biores Technol 101:4895–4899

    CrossRef  Google Scholar 

  • Zhang YHP, Ding S-Y, Mielenz JR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioengin 97(2):214–223

    CrossRef  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    CrossRef  Google Scholar 

  • Zhu JY, Zhu W, Obryan P, Dien BS, Tian S, Gleisner R (2010) Ethanol production from SPORL pretreated lodge pole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol 86(5):1355–1365

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak G. Panpatte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Panpatte, D.G., Jhala, Y.K. (2019). Agricultural Waste: A Suitable Source for Biofuel Production. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)