Skip to main content

Bioenergy Crops: Recent Advances and Future Outlook

Part of the Biofuel and Biorefinery Technologies book series (BBT,volume 10)

Abstract

Fossil fuels have solved our energy problems since the beginning of the industrial revolution that started in the eighteenth century. However, from past few decades, the world has seen an unprecedented and uncontrolled use of fossil fuels. In the current era, we heavily rely on fossil fuels for energy demands. It is undeniably true that fossil fuels hold the credit of shaping our world, but on the cost of environmental and related hazards. The negative environmental impacts of fossil usage are now being realized, and the search for alternative energy sources has begun. Bioenergy crops are one such energy source that could positively impact the environment to reduce the level of carbon dioxide, emission of greenhouse gases and soil erosion. The biofuel generation using fast growing and photosynthetically efficient bioenergy crops is emerging as a reliable alternative to fossil fuels. Bioenergy plants increase soil carbon and fix atmospheric carbon. In addition, bioenergy crops (miscanthus, sorghum and poplar) could also be used for the phytoremediation of heavy metal-contaminated soils. The bioenergy crops include specific plants that are grown and maintained at lower costs for biofuel production. The bioenergy crops are classified into five types namely, first-, second- and third-generation bioenergy crops, dedicated energy crops and halophytes. The first-generation bioenergy crops include corn, sorghum, rapeseed and sugarcane, whereas the second-generation bioenergy crops are comprised of switchgrass, miscanthus, alfalfa, reed canary grass, Napier grass and other plants. The third-generation bioenergy crops contain boreal plants, crassulacean acid metabolism (CAM) plants, eucalyptus and microalgae. Bioenergy halophytes are comprised of the genera Acacia, Eucalyptus, Casuarina, Melaleuca, Prosopis, Rhizophora and Tamarix. The dedicated energy crops include perennial herbaceous and woody plant species as giant miscanthus, switchgrass, jatropha and algae.

Keywords

  • Bioenergy crops
  • Global climate change
  • Greenhouse gases
  • Phytoremediation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14463-0_12
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14463-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2

References

  • Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17:675–691

    CrossRef  Google Scholar 

  • Ahmad A, Yasin NM, Derek C, Lim J (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15:584–593

    CrossRef  Google Scholar 

  • Al Chami Z, Amer N, Al Bitar L, Cavoski I (2015) Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int J Environ Sci Technol 12:3957–3970

    CrossRef  Google Scholar 

  • Baenziger P, Russell W, Graef G, Campbell B (2006) Improving lives. Crop Sci 46:2230–2244

    CrossRef  Google Scholar 

  • Bai H, Euring D, Volmer K, Janz D, Polle A (2013) The nitrate transporter (NRT) gene family in poplar. PLoS ONE 8:e72126

    CrossRef  Google Scholar 

  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. BioEnergy Res 8:1500–1511

    CrossRef  Google Scholar 

  • Berg Å (2002) Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agric Ecosyst Environ 90:265–276

    CrossRef  Google Scholar 

  • Boe A, Beck DL (2008) Yield components of biomass in switchgrass. Crop Sci 48:1306–1311

    CrossRef  Google Scholar 

  • Boe A, Lee D (2007) Genetic variation for biomass production in prairie cordgrass and switchgrass. Crop Sci 47:929–934

    CrossRef  Google Scholar 

  • Boehmel C, Lewandowski I, Claupein W (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agric Syst 96:224–236

    Google Scholar 

  • Börjesson P (1999) Environmental effects of energy crop cultivation in Sweden—I: identification and quantification. Biomass Bioenergy 16:137–154

    CrossRef  Google Scholar 

  • Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    CrossRef  Google Scholar 

  • Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558

    CrossRef  Google Scholar 

  • Bush DR, Leach JE (2007) Translational genomics for bioenergy production: there’s room for more than one model. Plant Cell 19:2971–2973

    CrossRef  Google Scholar 

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    CrossRef  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    CrossRef  Google Scholar 

  • Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47:2261–2273

    CrossRef  Google Scholar 

  • Cassaniti C, Romano D, Hop M, Flowers T (2013) Growing floricultural crops with brackish water. Environ Exper Bot 92:165–175

    CrossRef  Google Scholar 

  • Chhetri A, Tango M, Budge S, Watts K, Islam M (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9:169–180

    CrossRef  Google Scholar 

  • Cibin R, Trybula E, Chaubey I, Brouder SM, Volenec JJ (2016) Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. Gcb Bioenergy 8:837–848

    CrossRef  Google Scholar 

  • Delong M, Swanberg D, Oelke E (1995) Sustainable biomass energy production and rural economic development using alfalfa as feedstock. National Renewable Energy Lab, Golden, CO (United States)

    Google Scholar 

  • Dipti, Priyanka (2013) Bioenergy crops an alternative energy. Int J Environ Eng Manag 4:265–272

    Google Scholar 

  • Ehrlich PR, Pringle RM (2008) Where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partial solutions. Proc Natl Acad Sci 105:11579–11586

    CrossRef  Google Scholar 

  • Eisenbies MH, Vance ED, Aust WM, Seiler JR (2009) Intensive utilization of harvest residues in southern pine plantations: quantities available and implications for nutrient budgets and sustainable site productivity. Bioenergy Res 2:90–98

    CrossRef  Google Scholar 

  • EPA (1999) Phytoremediation resource guide. Environmental Protection Agency EPA 542-B-99-003

    Google Scholar 

  • Escamilla-Treviño LL (2012) Potential of plants from the genus Agave as bioenergy crops. Bioenergy Res 5:1–9

    CrossRef  Google Scholar 

  • Feng Q, Chaubey I, Her YG, Cibin R, Engel B, Volenec J, Wang X (2015) Hydrologic and water quality impacts and biomass production potential on marginal land. Environ Model Softw 72:230–238

    CrossRef  Google Scholar 

  • Fernando AL, Duarte MP, Almeida J, Boléo S, Mendes B (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuels, Bioprod Biorefin 4:594–604

    CrossRef  Google Scholar 

  • Ferré C, Leip A, Matteucci G, Previtali F, Seufert G (2005) Impact of 40 years poplar cultivation on soil carbon stocks and greenhouse gas fluxes. Biogeosci Discuss 2:897–931

    CrossRef  Google Scholar 

  • Finckh MR (2008) Integration of breeding and technology into diversification strategies for disease control in modern agriculture. In: Sustainable disease management in a European context. Springer, pp 399–409

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CrossRef  Google Scholar 

  • Fraiture Cd, Giordano M, Liao Y (2008) Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10:67–81

    CrossRef  Google Scholar 

  • Fritioff Å, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Int J Phytoremed 5:211–224

    CrossRef  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    CrossRef  Google Scholar 

  • Grammelis P, Malliopoulou A, Basinas P, Danalatos NG (2008) Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int J Mol Sci 9:1241–1258

    CrossRef  Google Scholar 

  • Grassland F (2011) A searchable catalogue of grass and forage legumes. FAO, Rome, Italy

    Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    CrossRef  Google Scholar 

  • Gresshoff PM, Rangan L, Indrasumunar A, Scott PT (2017) A new bioenergy crop based on oil-rich seeds from the legume tree Pongamia pinnata. Energy Emission Control Technol 5:19–26

    CrossRef  Google Scholar 

  • Harris K, Subudhi P, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2006) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    CrossRef  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Bhowmik PC, Hossain M, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res Int 2014:1–12

    Google Scholar 

  • Hastilestari BR, Mudersbach M, Tomala F, Vogt H, Biskupek-Korell B, Van Damme P, Guretzki S, Papenbrock J (2013) Euphorbia tirucalli L.–comprehensive characterization of a drought tolerant plant with a potential as biofuel source. PLoS One 8:e63501

    Google Scholar 

  • Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    CrossRef  Google Scholar 

  • Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, McIsaac GF, David MB, Voigt TB (2010) Miscanthus: a promising biomass crop. In: Advances in botanical research, vol 56. Elsevier, pp 75–137

    Google Scholar 

  • Hoque YM, Raj C, Hantush MM, Chaubey I, Govindaraju RS (2014) How do land-use and climate change affect watershed health? A scenario-based analysis. Water Qual Expo Health 6:19–33

    CrossRef  Google Scholar 

  • Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. Vitro Cellular Develop Biol Plant 45:291–305

    CrossRef  Google Scholar 

  • Jaradat AA (2010) Genetic resources of energy crops: biological systems to combat climate change. Aust J Crop Sci 4:309–323

    Google Scholar 

  • Jones GA, Sieving KE (2006) Intercropping sunflower in organic vegetables to augment bird predators of arthropods. Agric Ecosyst Environ 117:171–177

    CrossRef  Google Scholar 

  • Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels free access. J Integr Plant Biol 53:151–165

    CrossRef  Google Scholar 

  • Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32

    CrossRef  Google Scholar 

  • Kim HK, Parajuli PB, To SF (2013) Assessing impacts of bioenergy crops and climate change on hydrometeorology in the Yazoo River Basin, Mississippi. Agric Meteorol 169:61–73

    CrossRef  Google Scholar 

  • Kotchoni SO, Gachomo EW (2008) Biofuel production: a promising alternative energy for environmental cleanup and fuelling through renewable resources. J Biol Sci 8:693–701

    CrossRef  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830

    CrossRef  Google Scholar 

  • Lamb JF, Jung H-JG, Sheaffer CC, Samac DA (2007) Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop Sci 47:1407–1415

    CrossRef  Google Scholar 

  • Lamb JF, Sheaffer CC, Samac DA (2003) Population density and harvest maturity effects on leaf and stem yield in alfalfa. Agron J 95:635–641

    CrossRef  Google Scholar 

  • Landis DA, Gardiner MM, van der Werf W, Swinton SM (2008) Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc Natl Acad Sci 105:20552–20557

    CrossRef  Google Scholar 

  • Leakey AD (2009) Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc R Soc Lond B Biol Sci 276:2333–2343

    CrossRef  Google Scholar 

  • Lee M (1998) Genome projects and gene pools: new germplasm for plant breeding? Proc Natl Acad Sci 95:2001–2004

    CrossRef  Google Scholar 

  • Lehtomäki A, Viinikainen T, Rintala J (2008) Screening boreal energy crops and crop residues for methane biofuel production. Biomass Bioenergy 32:541–550

    CrossRef  Google Scholar 

  • Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21

    CrossRef  Google Scholar 

  • Lewandowski I, Clifton-Brown J, Scurlock J, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    CrossRef  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    CrossRef  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Google Scholar 

  • Lorenz A, Coors J, De Leon N, Wolfrum E, Hames B, Sluiter A, Weimer P (2009) Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol. Crop Sci 49:85–98

    CrossRef  Google Scholar 

  • Ma Z, Wood C, Bransby D (2000) Impacts of soil management on root characteristics of switchgrass. Biomass Bioenergy 18:105–112

    CrossRef  Google Scholar 

  • Mabee W, McFarlane P, Saddler J (2011) Biomass availability for lignocellulosic ethanol production. Biomass Bioenergy 35:4519–4529

    CrossRef  Google Scholar 

  • Masarovičová E, Kráľová K, Peško M (2009) Energetic plants–cost and benefit. Ecol Chem Eng 16:264–276

    Google Scholar 

  • McBride AC, Dale VH, Baskaran LM, Downing ME, Eaton LM, Efroymson RA, Garten CT Jr, Kline KL, Jager HI, Mulholland PJ (2011) Indicators to support environmental sustainability of bioenergy systems. Ecol Indic 11:1277–1289

    CrossRef  Google Scholar 

  • McLaughlin SB, Kiniry JR, Taliaferro CM, Ugarte DDLT (2006) Projecting yield and utilization potential of switchgrass as an energy crop. Adv Agron 90:267–297

    CrossRef  Google Scholar 

  • Merigliano MF, Lesica P (1998) The native status of reed canarygrass (Phalaris arundinacea L.) in the Inland Northwest. USA Nat Areas J 18:223–230

    Google Scholar 

  • Miller CA, Gage CL (2011) Potential adverse environmental impacts of greenhouse gas mitigation strategies. In: Global climate change-the technology challenge. Springer, pp 377–415

    Google Scholar 

  • Mohammed IY, Abakr YA, Kazi FK, Yusup S, Alshareef I, Chin SA (2015) Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies 8:3403–3417

    CrossRef  Google Scholar 

  • Mola-Yudego B, González-Olabarria JR (2010) Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: lessons to be learned about the spread of energy crops. Biomass Bioenergy 34:442–448

    CrossRef  Google Scholar 

  • Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32:216–223

    CrossRef  Google Scholar 

  • Moser BR, Dien BS, Seliskar DM, Gallagher JL (2013) Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol. Renew Energy 50:833–839

    CrossRef  Google Scholar 

  • O’Neill GJ, Gordon A (1994) The nitrogen filtering capability of Carolina poplar in an artificial riparian zone. J Environ Qual 23:1218–1223

    Google Scholar 

  • Oh K, Cao T, Cheng H, Liang X, Hu X, Yan L, Yonemochi S, Takahi S (2015) Phytoremediation potential of sorghum as a biofuel crop and the enhancement effects with microbe inoculation in heavy metal contaminated soil. J Biosci Med 3:9–14

    Google Scholar 

  • Oh K, Li T, Cheng HY, Hu XF, Lin Q, Xie YH (2013) A primary study on assessment of phytoremediation potential of biofuel crops in heavy metal contaminated soil. In: Applied mechanics and materials. Trans Tech Publications, pp 1135–1138

    Google Scholar 

  • Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing, and multilocus interactions. Genetics 185:745–760

    CrossRef  Google Scholar 

  • Oliver RJ, Finch JW, Taylor G (2009) Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield. GCB Bioenergy 1:97–114

    CrossRef  Google Scholar 

  • Ortiz R (2008) Crop genetic engineering under global climate change. Ann Arid Zone 47:343

    Google Scholar 

  • Paine LK, Peterson TL, Undersander D, Rineer KC, Bartelt GA, Temple SA, Sample DW, Klemme RM (1996) Some ecological and socio-economic considerations for biomass energy crop production. Biomass Bioenergy 10:231–242

    CrossRef  Google Scholar 

  • Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exper Bot 107:71–83

    CrossRef  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CrossRef  Google Scholar 

  • Patil V, Tran K-Q, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9:1188–1195

    CrossRef  Google Scholar 

  • Petersen J-E (2008) Energy production with agricultural biomass: environmental implications and analytical challenges. Eur Rev Agric Econ 35:385–408

    CrossRef  Google Scholar 

  • Qazi HA, Paranjpe S, Bhargava S (2012) Stem sugar accumulation in sweet sorghum–activity and expression of sucrose metabolizing enzymes and sucrose transporters. J Plant Physiol 169:605–613

    CrossRef  Google Scholar 

  • Rae AM, Street NR, Robinson KM, Harris N, Taylor G (2009) Five QTL hotspots for yield in short rotation coppice bioenergy poplar: the poplar biomass loci. BMC Plant Biol 9:23

    CrossRef  Google Scholar 

  • Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540

    CrossRef  Google Scholar 

  • Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biol 12:275–291

    CrossRef  Google Scholar 

  • Rockwood DL, Rudie AW, Ralph SA, Zhu J, Winandy JE (2008) Energy product options for eucalyptus species grown as short rotation woody crops. Int J Mol Sci 9:1361–1378

    CrossRef  Google Scholar 

  • Rose IV L, Das M, Taliaferro C (2008) Estimation of genetic variability and heritability for biofuel feedstock yield in several populations of switchgrass. Ann Appl Biol 152:11–17

    Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    CrossRef  Google Scholar 

  • Russelle MP (2001) Alfalfa: after an 8,000-year journey, the “Queen of Forages” stands poised to enjoy renewed popularity. Am Sci 89:252–261

    CrossRef  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468

    CrossRef  Google Scholar 

  • Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768–788

    CrossRef  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    CrossRef  Google Scholar 

  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci 105:464–469

    CrossRef  Google Scholar 

  • Sims RE, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Global Change Biol 12:2054–2076

    CrossRef  Google Scholar 

  • Singh PP (2008) Exploring biodiversity and climate change benefits of community-based forest management. Glob Environ Chang 18:468–478

    CrossRef  Google Scholar 

  • Springer TL, Dewald CL (2004) Eastern gamagrass and other Tripsacum species. In: Warm-season (C4) grasses, pp 955–973

    Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotech 17:315–319

    CrossRef  Google Scholar 

  • Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC (2010) Genomic and small RNA sequencing of Miscanthus giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11:R12

    CrossRef  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    CrossRef  Google Scholar 

  • Tahir MHN, Casler MD, Moore KJ, Brummer EC (2011) Biomass yield and quality of reed canarygrass under five harvest management systems for bioenergy production. Bioenergy Res 4:111–119. https://doi.org/10.1007/s12155-010-9105-3

    CrossRef  Google Scholar 

  • Takamizawa K, Anderson W, Singh HP (2010) Ethanol from lignocellulosic crops. Industrial Crops and Uses CABI, Oxfordshire, pp 104–139

    Google Scholar 

  • Taylor G (2008) Bioenergy for heat and electricity in the UK: a research atlas and roadmap. Energy Policy 36:4383–4389

    CrossRef  Google Scholar 

  • Tharakan P, Robison D, Abrahamson L, Nowak C (2001) Multivariate approach for integrated evaluation of clonal biomass production potential. Biomass Bioenergy 21:237–247

    CrossRef  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    CrossRef  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271

    CrossRef  Google Scholar 

  • Vaněk T, Podlipna R, Soudek P (2010) General factors influencing application of phytotechnology techniques. In: Application of phytotechnologies for cleanup of industrial, agricultural, and wastewater contamination. Springer, pp 1–13

    Google Scholar 

  • Ventura Y, Eshel A, Pasternak D, Sagi M (2014) The development of halophyte-based agriculture: past and present. Ann Bot 115:529–540

    CrossRef  Google Scholar 

  • Villaverde JJ, Li J, Ek M, Ligero P, de Vega A (2009) Native lignin structure of Miscanthus giganteus and its changes during acetic and formic acid fractionation. J Agric Food Chem 57:6262–6270

    CrossRef  Google Scholar 

  • Villaverde JJ, Ligero P, Vega Ad (2010) Miscanthus giganteus as a source of biobased products through organosolv fractionation: a mini review. Open Agr J 4:102–110

    CrossRef  Google Scholar 

  • Vogel KP, Mitchell RB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48:2159–2164

    CrossRef  Google Scholar 

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276

    CrossRef  Google Scholar 

  • Wang S, Hastings A, Smith P (2012) An optimization model for energy crop supply. Gcb Bioenergy 4:88–95

    CrossRef  Google Scholar 

  • Wang Y, Yan L (2008) CFD studies on biomass thermochemical conversion. Int J Mol Sci 9:1108–1130. https://doi.org/10.3390/ijms9061108

    CrossRef  Google Scholar 

  • Williams C, Black I, Biswas T, Heading S (2007) Pathways to prosperity: second generation biomass crops for biofuels using saline lands and wastewater. Agri Sci 21:28–34

    Google Scholar 

  • Xie X, Zhou F, Zhao Y, Lu X (2008) A summary of ecological and energy-producing effects of perennial energy grasses. Acta Ecol Sin 28:2329–2342

    Google Scholar 

  • Yasuda M, Ishii Y, Ohta K (2014) Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: pretreatment, saccharification, and fermentation. Biotechnol Bioprocess Eng 19:943–950

    CrossRef  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    CrossRef  Google Scholar 

  • Zhao R, Wu X, Bean S, Wang D (2010) Ethanol from grain crops. Industrial crops and uses CABI International; Cambridge, MA, USA, pp 84–101

    Google Scholar 

  • Zhu K, Chen H, Nan Z (2010) Phytoremediation of loess soil contaminated by organic compounds. In: Application of phytotechnologies for cleanup of industrial, agricultural, and wastewater contamination. Springer, pp 159–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusum Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, P., Priyanka, P., Kumar, D., Yadav, A., Yadav, K. (2019). Bioenergy Crops: Recent Advances and Future Outlook. In: Rastegari, A., Yadav, A., Gupta, A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14463-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14462-3

  • Online ISBN: 978-3-030-14463-0

  • eBook Packages: EnergyEnergy (R0)