Skip to main content

Current State of the Problem of Thyroid Diseases: Principles and Technology of Thyroid Ultrasound

  • Chapter
  • First Online:
Thyroid Ultrasound

Abstract

Iodine deficiency in endemic regions and high incidence of thyroid disorders remain important social and medical problems. The diseases of the thyroid gland rank second among all endocrine pathology in terms of prevalence. They are registered in 8–20% of the adult population of the world. The number exceeds 50% in endemic regions. Thyroid cancer accounts for 1–3% of all malignant tumors. Recent studies demonstrate the increase in the incidence of thyroid diseases inclusive with malignant neoplasms in virtually all countries. Ultrasound is the leading imaging modality for thyroid diseases. Modern ultrasound scanners are sensitive enough to differentiate thyroid lesions of 1 mm in size. Sonography can be utilized as a screening method for thyroid diseases. Patients with thyroid abnormalities are subject to further qualified in-depth study. Modern multiparametric thyroid ultrasound is based on grayscale imaging and its derivatives (tissue harmonics, etc.), noninvasive assessment of vascularity (color and power Doppler imaging, spectral pulsed-wave Doppler, B-flow, etc.), assessment of tissue elasticity (ultrasound compression and shear wave elastography), contrast-enhanced ultrasound (invasive assessment of vascularity), postprocessing, and reconstruction (3D/4D, panoramic scan, multislice view, etc.). The study confers data on the location, dimensions, volume, margins, shape, echodensity, echostructure, elasticity, blood vessels of the thyroid parenchyma, and thyroid abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davydov MI, editor. Thyroid cancer. Oncology. Clinical recommendations. Moscow: Izdatyelskaya gruppa RONTS; 2015. (Book in Russian).

    Google Scholar 

  2. Fadeev VV. Nodular lesions of the thyroid gland: international algorithms and domestic clinical practice. Vrach. 2002;7:12–6. (Article in Russian).

    Google Scholar 

  3. Kotlyarov PM, Kharchenko VP, Alexandrov YK, et al. Ultrasound diagnosis of the diseases of the thyroid gland. Moscow: Vidar-M; 2009. (Book in Russian).

    Google Scholar 

  4. Schenke S, Zimny M. Combination of sonoelastography and TIRADS for the diagnostic assessment of thyroid nodules. Ultrasound Med Biol. 2018;44(3):575–83.

    Article  Google Scholar 

  5. Shin JH, Baek JH, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean society of thyroid radiology consensus statement and recommendations. Korean J Radiol. 2016;17(3):370–95.

    Article  Google Scholar 

  6. Tessler FN, Middleton WD, Grant EG, et al. ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee. J Am Coll Radiol. 2017;14(5):587–95.

    Article  Google Scholar 

  7. Baskin HJ, Duick DS, Levine RA, editors. Thyroid ultrasound and ultrasound-guided FNA. Berlin: Springer; 2013.

    Google Scholar 

  8. Biersack HJ, Grünwald F. Thyroid cancer. Berlin: Springer; 2005.

    Book  Google Scholar 

  9. Choi YM, Kim WG, Kwon H, et al. Changes in standardized mortality rates from thyroid cancer in Korea between 1985 and 2015: analysis of Korean national data. Cancer. 2017;123(24):4808–14.

    Article  Google Scholar 

  10. Kouvaraki MA, Shapiro SE, Fornage BD, et al. Role of preoperative ultrasonography in the surgical management of patients with thyroid cancer. Surgery. 2003;134(6):946–54.

    Article  Google Scholar 

  11. Paschke R, Cantara S, Crescenzi A, et al. European Thyroid Association Guidelines regarding thyroid nodule molecular fine needle aspiration cytology diagnostics. Eur Thyroid J. 2017;6(3):115–29.

    Article  Google Scholar 

  12. Sofferman RA, Ahuja AT, editors. Ultrasound of the thyroid and parathyroid glands. Berlin: Springer; 2012.

    Google Scholar 

  13. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214.

    Article  Google Scholar 

  14. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiate d thyroid cancer. Thyroid. 2016;26:1–133.

    Article  Google Scholar 

  15. Morris LG, Sikora AG, Tosteson TD, Davies L. The increasing incidence of thyroid cancer: the influence of access to care. Thyroid. 2013;23(7):885–91.

    Article  Google Scholar 

  16. Kaprin AD, Starinsky VV, Petrova GV, editors. The state of oncological care for the population of Russia in 2017. Moscow: P.A.Hertsen Moscow Oncology Research Center—Branch of Federal State Budgetary Institution National Medical Research Radiological Center of the Ministry of Healthcare of the Russian Federation; 2018. (Book in Russian).

    Google Scholar 

  17. Duick DS, Levine RA, Lupo MA, editors. Thyroid and parathyroid ultrasound and ultrasound-guided FNA. Berlin: Springer; 2018.

    Google Scholar 

  18. Mitkov VV, Ivanishina TV, Mitkova MD. Shear wave elastography in multiparametric ultrasound diagnosis of thyroid cancer. Ultrazvukovaya i funkcionalnaya diagnostika. 2016;1:13–28. (Article in Russian).

    Google Scholar 

  19. Du J, Bai X, Lu Y, et al. Diagnostic efficacy of ultrasonographic characteristics of thyroid carcinoma in predicting cervical lymph node metastasis. Ultrasound Med Biol. 2016;42(1):68–74.

    Article  Google Scholar 

  20. Rumyantsev PO, Ilyin AA, Rumyantseva UV, Sayenko VA. Thyroid cancer, modern approaches to diagnosis and treatment. Moscow: GEOTAR-Media; 2009. (Book in Russian).

    Google Scholar 

  21. Sencha AN. Ultrasonic visualization of malignant tumors of the thyroid gland. Ultrazvukovaya i funkcionalnaya diagnostika. 2008;2:20–9. (Article in Russian).

    Google Scholar 

  22. Howry DH, Holmes JH, Cushman CR, Posakony GJ. Ultrasonic visualization of living organs and tissues; with observations on some disease processes. Geriatrics. 1955;10(3):123–8.

    CAS  PubMed  Google Scholar 

  23. Fujimoto Y, Oka A, Omoto R, Hirose M. Ultrasound scanning of the thyroid gland as a new diagnostic approach. Ultrasonics. 1967;5:177.

    Article  CAS  Google Scholar 

  24. Blum M, Weiss B, Hernberg J. Evaluation of thyroid nodules by A-mode echography. Radiology. 1971;101:651–6.

    Article  CAS  Google Scholar 

  25. World Health Organization. Assessment of iodine deficiency disorders and monitoring their elimination. A guide for programme managers. 2nd ed. Geneva: WHO; 2002. Available from: http://www.who.int/nutrition/publications/micronutrients/iodine_deficiency/WHO_ NHD_01.1/en/.

    Google Scholar 

  26. Cui Y, Zhang Z, Li S, et al. Diagnosis and surgical management for retrosternal thyroid mass. Chin Med Sci J. 2002;17(3):173–7.

    PubMed  Google Scholar 

  27. Sciume C, Geraci G, Pisello F. Substernal goitre. Personal experience. Ann Ital Chir. 2005;76(6):517–21.

    PubMed  Google Scholar 

  28. Vlasov PV. Imaging diagnosis of the diseases of the chest. Moscow: Vidar; 2006. (Book in Russian).

    Google Scholar 

  29. Pinsky SV, Kalinin AP, Beloborodov VA. Diagnosis of diseases of the thyroid gland. Moscow: Medicine; 2005. (Book in Russian).

    Google Scholar 

  30. Ayache S, Mardyla N, Tramier B, Strunski V. Clinical signs and correlation with radiological extent in a series of 117 retrosternal goitre. Rev Laryngol Otol Rhinol (Bord). 2006;127(4):229–37.

    CAS  Google Scholar 

  31. Mackle T, Meaney J, Timon C. Tracheoesophageal compression associated with substernal goitre. Correlation of symptoms with cross-sectional imaging findings. J Laryngol Otol. 2006;26:1–4.

    Google Scholar 

  32. Kazakevich VI. Possibilities of mediastinal ultrasound in substernal spreading of thyroid tumors. Sonoace Int. 2007;16:58–65.. Article in Russian

    Google Scholar 

  33. Pishchik VG. Mediastinal neoplasms: the principles of differential diagnosis and surgical treatment. PhD thesis, S-Petersburg. 2008. (Book in Russian).

    Google Scholar 

  34. Ignjatovic M. Intrathoracic goiter. Vojnosanit Pregl. 2001;58(1):47–63.

    CAS  PubMed  Google Scholar 

  35. Belashkin II, Kulikova AD, Kochetkov AV, Kulikov MP. The value of the second tissue harmonic in the diagnosis of colloid nodes of the thyroid gland. In: Reports of the 4th Congress of the Russian Association of Specialists in ultrasound diagnostics in medicine. Moscow: 2003. p. 209. (Article in Russian).

    Google Scholar 

  36. Khadra H, Bakeer M, Hauch A, et al. Is vascular flow a predictor of malignant thyroid nodules? A meta-analysis. Gland Surg. 2016;5(6):576–82.

    Article  Google Scholar 

  37. Kahaly GJ, Bartalenab L, Hegedüs L, et al. 2018 European Thyroid Association Guideline for the management of Graves’ hyperthyroidism. Eur Thyroid J. 2018;7:167–86.

    Article  CAS  Google Scholar 

  38. Joish UK, Kavitha Y, Reddy RH, et al. Doppler indices of superior thyroid artery in clinically euthyroid adults. Indian J Radiol Imaging. 2018;28(1):10–3.

    Article  Google Scholar 

  39. Palaniappan MK, Aiyappan SK, Ranga U. Role of gray scale, color Doppler and spectral Doppler in differentiation between malignant and benign thyroid nodules. J Clin Diagn Res. 2016;10(8):TC01–6.

    PubMed  PubMed Central  Google Scholar 

  40. Ivanishina TV. Diagnostic possibilities of shear wave elastography in thyroid disease. PhD thesis, Moscow: 2017. (Book in Russian).

    Google Scholar 

  41. Lindop JE, Treece GM, Gee AH, Prager RW. 3D elastography using freehand ultrasound. J Ultrasound Med Biol. 2006;32(4):529–45.

    Article  Google Scholar 

  42. Mitkov VV, Ivanishina TV, Mitkova MD. Ultrasound examination of the unchanged thyroid gland with the use of shear wave elastography technology. Ultrazvukovaya i funkcionalnaya diagnostika. 2014;6:13–20. (Article in Russian).

    Google Scholar 

  43. Ophir J, Cespedes I, Ponnekanti H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.

    Article  CAS  Google Scholar 

  44. Sencha AN, Mogutov MS, Patrunov YN, et al. Quantitative and qualitative parameters of ultrasonic elastography in the diagnosis of thyroid cancer. Ultrazvukovaya I funkcionalnaya diagnostika. 2013;5:85–98. (Article in Russian).

    Google Scholar 

  45. Tanaka K, Fukunari N, Igarashi T, et al. Evaluation of thyroid malignant tumor using real – team tissue elastography. Ultrasound Med Biol. 2006;32(5):93.

    Google Scholar 

  46. Zubarev AR, Fedorova VN, Demidova AK, et al. Ultrasonic elastography as a new step in the differential diagnosis of thyroid nodules: a literature review and preliminary clinical data. Medicinskaya Vizualizaciya. 2010;1:11–6. (Article in Russian)

    Google Scholar 

  47. Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.

    Article  Google Scholar 

  48. Rago T, Vitti P. Role of thyroid ultrasound in the diagnostic evaluation of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22:913–28.

    Article  Google Scholar 

  49. Park SH, Kim SJ, Kim E, et al. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. AJR. 2009;193(5):W416–23.

    Article  Google Scholar 

  50. Cantisani V, Grazhdani H, Ricci P, et al. Q-elastosonography of solid thyroid nodules: assessment of diagnostic efficacy and interobserver variability in a large patient cohort. Eur Radiol. 2014;24:143–50.

    Article  Google Scholar 

  51. Fukunari N, Arai K, Naakamura A, et al. Clinical evaluation of elastography for the differential diagnosis of thyroid follicular tumors. Abstracts from the 12th Congress of World Federation for Ultrasound in Medicine and Biology. J Ultrasound Med Biol. 2009;35(S8):230.

    Article  Google Scholar 

  52. Vasiliev DA, Kostromina EV, ZA-G R, et al. Ways to improve the diagnostic significance of sonoelastography in differential diagnosis of thyroid nodules. Clin Exp Thyroid. 2014;10(1):38–43. (Article in Russian).

    Article  Google Scholar 

  53. Wang Y, Dan HJ, Dan HY, et al. Differential diagnosis of small single solid thyroid nodules using realtime ultrasound elastography. J Int Med Res. 2010;38(2):466–72.

    Article  CAS  Google Scholar 

  54. Garra BS. Tissue elasticity imaging using ultrasound. Appl Radiol. 2011;2:24–30.

    Google Scholar 

  55. Sencha AN, Mogutov MS, Sergeeva ED, Shmelev DM. Sonoelastografiya and the newest technologies of ultrasonic research of a cancer of a thyroid gland. Moscow: Vidar; 2010. (Book in Russian).

    Google Scholar 

  56. Borsukov AV, Morozova TG, Kovalev AV, et al. Standardized technique of compression thyroid ultrasound of the thyroid gland. Endocr Surg. 2014;1:55–61. (Article in Russian).

    Article  Google Scholar 

  57. Calvete AC, Mestre JD, Gonzalez JM, et al. Acoustic radiation force impulse imaging for evaluation of the thyroid gland. J Ultrasound Med. 2014;33(6):1031–40.

    Article  Google Scholar 

  58. Friedrich-Rust M, Sperber A, Holzer K, et al. Real-time elastography and contrast-enhanced ultrasound for the assessment of thyroid nodules. Exp Clin Endocrinol Diabetes. 2010;118:602–9.

    Article  CAS  Google Scholar 

  59. Monpeyssen H, Tramalloni J, Poiree S, et al. Elastography of the thyroid. Diagn Interv Imaging. 2013;94(5):535–44.

    Article  CAS  Google Scholar 

  60. Pomortsev AV, Gudkov GV, Degtyareva YS, et al. Possibilities of shear wave elastography in differential diagnostics of focal thyroid pathology. Radiat Diagn Ther. 2011;3:60–6. (Article in Russian).

    Google Scholar 

  61. Sebag F, Vaillant-Lombard J, Berbis J, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95(12):5281–8.

    Article  CAS  Google Scholar 

  62. Sencha AN. Ultrasound diagnostics. Surface-located organs. Moscow: Vidar M Publishing House; 2015. (Book in Russian).

    Google Scholar 

  63. Osipov LV. Ultrasound diagnostic devices. Modes, methods and techniques. Moscow: Izomed; 2011. (Book in Russian).

    Google Scholar 

  64. Magri F, Chytiris S, Capelli V, et al. Shear wave elastography in the diagnosis of thyroid nodules: feasibility in the case of coexistent chronic autoimmune Hashimoto’s thyroiditis. Clin Endocrinol. 2012;76(1):137–41.

    Article  Google Scholar 

  65. Ma BY, Jin Y, Suntdar PS, et al. Contrast-enhanced ultrasonography findings for papillary thyroid carcinoma and its pathological bases. Sichuan Da Xue Xue Bao Yi Xue Ban. 2014;45(6):997–1000.

    PubMed  Google Scholar 

  66. Sencha AN, Mogutov MS, Patrunov YN, et al. Ultrasound with contrast agents. Moscow: Vidar; 2016. (Book in Russian).

    Google Scholar 

  67. Sencha EA. Ultrasound examination with contrast enhancement in the diagnosis of thyroid tumors. REJR. 2017;7(3):44–52. (Article in Russian).

    Article  Google Scholar 

  68. Zhang B, Jiang YX, Liu JB, et al. Utility of contrast-enhanced ultrasound for evaluation of thyroid nodules. Thyroid. 2010;20(1):51–7.

    Article  CAS  Google Scholar 

  69. Zhang Y, Zhou P, Tian SM, et al. Usefulness of combined use of contrast-enhanced ultrasound and TI-RADS classification for the differentiation of benign from malignant lesions of thyroid nodules. Eur Radiol. 2017;27:1527–36.

    Article  Google Scholar 

  70. Zhao RN, Zhang B, Yang X, et al. Diagnostic value of contrast enhanced ultrasound of thyroid nodules coexisting with Hashimoto’s thyroiditis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2015;37(1):66–70.

    PubMed  Google Scholar 

  71. Gramiak R, Shah P, Cramer D. Ultrasound cardiography: contrast studies in anatomy and function. Radiology. 1969;92:939.

    Article  CAS  Google Scholar 

  72. Spiezia S, Farina R, Cerbone G. Analysis of time/intensity enhancement curves after echocontrast agents injection in thyroid nodules evaluation: preliminary report. In: Ultrasound in medicine and biology 26(S2). Abstracts from the 9th Congress of WFUMB. Florence. Italy. 2000; p. A181.

    Google Scholar 

  73. Schleder S, Janke M, Agha A, et al. Preoperative differentiation of thyroid adenomas and thyroid carcinomas using high resolution contrast-enhanced ultrasound (CEUS). Clin Hemorheol Microcirc. 2015;61(1):13–22.

    Article  CAS  Google Scholar 

  74. Sencha EA, Sencha AN, Penyaeva EI, et al. The use of quantitative analysis of ultrasound with contrast enhancement in the differential diagnosis of focal changes in the thyroid gland. Ultrazvukovaya i funkcionalnaya diagnostika. 2018;2:12–26. (Article in Russian).

    Google Scholar 

  75. Yuan Z, Quan J, Yunxiao Z, et al. Contrast-enhanced ultrasound in the diagnosis of solitary thyroid nodules. J Cancer Res Ther. 2015;11:41–5.

    Article  Google Scholar 

  76. Turtulici G, Orlandi D, Fabbro E, et al. Contrast-enhanced ultrasound (CEUS) quantitative evaluation of histologically proven thyroid nodules. In: Radiological Society of North America 2011 Scientific Assembly and Annual Meeting, November 26 - December 2, 2011, Chicago IL. 2011. http://archive.rsna.org/2011/11034465.html.

  77. Jiang J, Huang L, Zhang H, et al. Contrast-enhanced sonography of thyroid nodules. J Clin Ultrasound. 2015;43(3):153–6.

    Article  CAS  Google Scholar 

  78. Sencha AN, Patrunov Yu N, Mogutov MS, et al. Thyroid cancer: US THI-RADS classification, ultrasound qualitative and quantitative elastography, contrast ultrasound. In: Collection of scientific papers “Nevsky Radiologichesky Forum-2015”. St. Petersburg: ELBI-SPb; 2015. pp. 605–8. (Book in Russian).

    Google Scholar 

  79. Yu D, Han Y, Chen T. Contrast-enhanced ultrasound for differentiation of benign and malignant thyroid lesions: meta-analysis. Otolaryngol Head Neck Surg. 2014;151(6):909–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sencha, A.N., Patrunov, Y.N., Pavlovich, S.V., Timofeyeva, L.A., Tukhbatullin, M.G., Smetnik, A.A. (2019). Current State of the Problem of Thyroid Diseases: Principles and Technology of Thyroid Ultrasound. In: Sencha, A., Patrunov, Y. (eds) Thyroid Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-030-14451-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14451-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14450-0

  • Online ISBN: 978-3-030-14451-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics