Skip to main content

Challenges and Requirements

  • Chapter
  • First Online:

Abstract

MR-only radiotherapy planning is an area of active research and development. Technological advances in MR-guided delivery systems and availability of MR scanners in radiotherapy department have made the clinical integration of MR-only planning possible. The chapter outlines challenges and requirements for MR-only radiotherapy and gives background on the most important requirement of MR-only planning, namely, the development of synthetic CT. The chapter describes the simplest method for generating synthetic CT, mainly bulk density assignment, and sets the background and motivation for more advanced methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Philips Healthcare NA, Cleveland, OH.

  2. 2.

    Spectronic Medical AB.

References

  • Ahmed M, et al. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours—a study using flexible surface coils. Radiother Oncol. 2010;94(2):161–7.

    Article  PubMed  Google Scholar 

  • Beavis AW, et al. Radiotherapy treatment planning of brain tumours using MRI alone. Br J Radiol. 1998;71(845):544–8.

    Article  CAS  PubMed  Google Scholar 

  • Boettger T, et al. Radiation therapy planning and simulation with magnetic resonance images. In Medical imaging. SPIE. 2008.

    Google Scholar 

  • Brock KK, Deformable Registration Accuracy Consortium. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010;76(2):583–96.

    Article  PubMed  Google Scholar 

  • Buhl SK, et al. Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification – a step towards MRI-based treatment planning. Acta Oncol. 2010;49(7):1085–91.

    Article  PubMed  Google Scholar 

  • Chang C, et al. Dosimetric evaluation of a volume segmentation algorithm for MRI-based treatment planning for head and neck cancer. Int J Radiat Oncol Biol Phys. 2010;78(3):S70.

    Article  Google Scholar 

  • Chen L, et al. Dosimetric evaluation of MRI-based treatment planning for prostate cancer. Phys Med Biol. 2004a;49(22):5157–70.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, et al. MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys. 2004b;60(2):636–47.

    Article  PubMed  Google Scholar 

  • Chin AL, et al. Feasibility and limitations of bulk density assignment in MRI for head and neck IMRT treatment planning. J Appl Clin Med Phys. 2014;15(5):4851.

    Article  PubMed  Google Scholar 

  • Dean CJ, et al. An evaluation of four CT-MRI co-registration techniques for radiotherapy treatment planning of prone rectal cancer patients. Br J Radiol. 2012;85(1009):61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doemer A, et al. Evaluating organ delineation, dose calculation and daily localization in an open-MRI simulation workflow for prostate cancer patients. Radiat Oncol. 2015;10:37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017;12(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eilertsen K, et al. A simulation of MRI based dose calculations on the basis of radiotherapy planning CT images. Acta Oncol. 2008;47(7):1294–302.

    Article  PubMed  Google Scholar 

  • Ellingsen LM, et al. Robust deformable image registration using prior shape information for atlas to patient registration. Comput Med Imaging Graph. 2010;34(1):79–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiorentino A, et al. Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomography. Clin Transl Oncol. 2013;15(9):754–8.

    Article  CAS  PubMed  Google Scholar 

  • Gademann G, et al. Fractionated stereotactically guided radiotherapy of head and neck tumors: a report on clinical use of a new system in 195 cases. Radiother Oncol. 1993;29(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  • Gill S, et al. Seminal vesicle intrafraction motion analysed with cinematic magnetic resonance imaging. Radiat Oncol. 2014;9:174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanvey S, et al. The influence of MRI scan position on image registration accuracy, target delineation and calculated dose in prostatic radiotherapy. Br J Radiol. 2012;85(1020):e1256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogcarspel SJ, et al. The feasibility of utilizing pseudo CT-data for online MRI based treatment plan adaptation for a stereotactic radiotherapy treatment of spinal bone metastases. Phys Med Biol. 2014;59(23):7383–91.

    Article  PubMed  Google Scholar 

  • Johnstone E, et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys. 2018;100(1):199–217.

    Article  PubMed  Google Scholar 

  • Jonsson JH, et al. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions. Radiat Oncol. 2010;5:62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karotki A, et al. Comparison of bulk electron density and voxel-based electron density treatment planning. J Appl Clin Med Phys. 2011;12(4):3522.

    Article  PubMed  Google Scholar 

  • Köhler M, et al. MR-only simulation for radiotherapy planning. Philips White Paper. 2015.

    Google Scholar 

  • Korhonen J, et al. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys. 2014;41(1):011704.

    Article  PubMed  Google Scholar 

  • Korhonen J, et al. Feasibility of MRI-based reference images for image-guided radiotherapy of the pelvis with either cone-beam computed tomography or planar localization images. Acta Oncol. 2015;54(6):889–95.

    Article  CAS  PubMed  Google Scholar 

  • Korsholm ME, Waring LW, Edmund JM. A criterion for the reliable use of MRI-only radiotherapy. Radiat Oncol. 2014;9:16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristensen BH, et al. Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours. Radiother Oncol. 2008;87(1):100–9.

    Article  PubMed  Google Scholar 

  • Lambert J, et al. MRI-guided prostate radiation therapy planning: investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol. 2011;98(3):330–4.

    Article  PubMed  Google Scholar 

  • Lee YK, et al. Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol. 2003;66(2):203–16.

    Article  PubMed  Google Scholar 

  • Mak D, et al. Seminal vesicle interfraction displacement and margins in image guided radiotherapy for prostate cancer. Radiat Oncol. 2012;7:139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasquier D, et al. MRI alone simulation for conformal radiation therapy of prostate cancer: technical aspects. Conf Proc IEEE Eng Med Biol Soc. 2006;1:160–3.

    Article  CAS  Google Scholar 

  • Persson E, et al. MR-OPERA: a multicenter/multivendor validation of magnetic resonance imaging-only prostate treatment planning using synthetic computed tomography images. Int J Radiat Oncol Biol Phys. 2017;99(3):692–700.

    Article  PubMed  Google Scholar 

  • Prabhakar R, et al. Comparison of computed tomography and magnetic resonance based target volume in brain tumors. J Cancer Res Ther. 2007a;3(2):121–3.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar R, et al. Feasibility of using MRI alone for 3D radiation treatment planning in brain tumors. Jpn J Clin Oncol. 2007b;37(6):405–11.

    Article  CAS  PubMed  Google Scholar 

  • Ramsey CR, Oliver AL. Magnetic resonance imaging based digitally reconstructed radiographs, virtual simulation, and three-dimensional treatment planning for brain neoplasms. Med Phys. 1998;25(10):1928–34.

    Article  CAS  PubMed  Google Scholar 

  • Ramsey CR, et al. Clinical application of digitally-reconstructed radiographs generated from magnetic resonance imaging for intracranial lesions. Int J Radiat Oncol Biol Phys. 1999;45(3):797–802.

    Article  CAS  PubMed  Google Scholar 

  • Rasch C, et al. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys. 1999;43(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  • Roach M III, et al. Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 1996;35(5):1011–8.

    Article  PubMed  Google Scholar 

  • Roberson PL, et al. Use and uncertainties of mutual information for computed tomography/ magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys. 2005;32(2):473–82.

    Article  PubMed  Google Scholar 

  • Schad LR, et al. Radiosurgical treatment planning of brain metastases based on a fast, three-dimensional MR imaging technique. Magn Reson Imaging. 1994;12(5):811–9.

    Article  CAS  PubMed  Google Scholar 

  • Stanescu T, et al. A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions. Phys Med Biol. 2008;53(13):3579–93.

    Article  CAS  PubMed  Google Scholar 

  • Sun J, et al. Investigation on the performance of dedicated radiotherapy positioning devices for MR scanning for prostate planning. J Appl Clin Med Phys. 2015;16(2):4848.

    Article  PubMed  Google Scholar 

  • Tyagi N, et al. Clinical workflow for MR-only simulation and planning in prostate. Radiat Oncol. 2017a;12(1):119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyagi N, et al. Dosimetric and workflow evaluation of first commercial synthetic CT software for clinical use in pelvis. Phys Med Biol. 2017b;62(8):2961–75.

    Article  PubMed  Google Scholar 

  • Ulin K, Urie MM, Cherlow JM. Results of a multi-institutional benchmark test for cranial CT/MR image registration. Int J Radiat Oncol Biol Phys. 2010;77(5):1584–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, et al. MRI-based treatment planning with electron density information mapped from CT images: a preliminary study. Technol Cancer Res Treat. 2008;7(5):341–8.

    Article  CAS  PubMed  Google Scholar 

  • Weber DC, et al. Open low-field magnetic resonance imaging for target definition, dose calculations and set-up verification during three-dimensional CRT for glioblastoma multiforme. Clin Oncol (R Coll Radiol). 2008;20(2):157–67.

    Article  CAS  Google Scholar 

  • Weltens C, et al. Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging. Radiother Oncol. 2001;60(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  • Yin FF, et al. MR image-guided portal verification for brain treatment field. Int J Radiat Oncol Biol Phys. 1998;40(3):703–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, N. (2019). Challenges and Requirements. In: Liney, G., van der Heide, U. (eds) MRI for Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-14442-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14442-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14441-8

  • Online ISBN: 978-3-030-14442-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics